Jurgen Sygusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A "Drug Sweeping―State of the TriABC Triclosan Efflux Pump from Pseudomonas aeruginosa. Structure, 2021, 29, 261-274.e6.	1.6	11
2	Targeting a moonlighting function of aldolase induces apoptosis in cancer cells. Cell Death and Disease, 2019, 10, 712.	2.7	47
3	Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagα from the Helicobacter pylori type IV secretion system. Scientific Reports, 2019, 9, 6474.	1.6	16
4	Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. Journal of Biological Chemistry, 2018, 293, 7737-7753.	1.6	18
5	Bisphosphonate Inhibitors of Mammalian Glycolytic Aldolase. Journal of Medicinal Chemistry, 2018, 61, 10558-10572.	2.9	8
6	MmpL3 as a Target for the Treatment of Drug-Resistant Nontuberculous Mycobacterial Infections. Frontiers in Microbiology, 2018, 9, 1547.	1.5	40
7	Analysis of Novel Interactions between Components of the Selenocysteine Biosynthesis Pathway, SEPHS1, SEPHS2, SEPSECS, and SECp43. Biochemistry, 2017, 56, 2261-2270.	1.2	20
8	Structural and Biochemical Characterization of Organotin and Organolead Compounds Binding to the Organomercurial Lyase MerB Provide New Insights into Its Mechanism of Carbon–Metal Bond Cleavage. Journal of the American Chemical Society, 2017, 139, 910-921.	6.6	12
9	Isomer activation controls stereospecificity of class I fructose-1,6-bisphosphate aldolases. Journal of Biological Chemistry, 2017, 292, 19849-19860.	1.6	5
10	Three-Dimensional Architecture of the L-Type Calcium Channel: Structural Insights into the CaVα2δ1 Auxiliary Protein. Biochemistry & Molecular Biology Journal, 2016, 02, .	0.3	7
11	Molecular Dynamics Simulations of Hydrophobic Matching in KcsA. Biophysical Journal, 2016, 110, 343a.	0.2	0
12	Structure–Function Profile of MmpL3, the Essential Mycolic Acid Transporter from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 702-713.	1.8	86
13	Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System. Journal of Biological Chemistry, 2016, 291, 23817-23829.	1.6	38
14	Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg–Carbon Bond Cleavage and Metal Binding Specificity. Biochemistry, 2016, 55, 1070-1081.	1.2	15
15	Peptides Designed To Spatially Depict the Epstein-Barr Virus Major Virion Glycoprotein gp350 Neutralization Epitope Elicit Antibodies That Block Virus-Neutralizing Antibody 72A1 Interaction with the Native gp350 Molecule. Journal of Virology, 2015, 89, 4932-4941.	1.5	20
16	Maximal Activity of KcsA, Kirbac1.1 and Kir2.1 Channels are Differentially Regulated by Membrane Thickness. Biophysical Journal, 2014, 106, 543a.	0.2	0
17	A family portrait: structural comparison of the Whirly proteins from <i>Arabidopsis thaliana</i> and <i>Solanum tuberosum</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1207-1211.	0.7	17
18	A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Research, 2012, 40, 258-269.	6.5	48

JURGEN SYGUSCH

#	Article	IF	CITATIONS
19	Identification of the Binding Site of Brucella VirB8 Interaction Inhibitors. Chemistry and Biology, 2012, 19, 1041-1048.	6.2	62
20	Crystal Structure of Reaction Intermediates in Pyruvate Class II Aldolase. Journal of Biological Chemistry, 2012, 287, 36208-36221.	1.6	30
21	Mannitol Bis-phosphate Based Inhibitors of Fructose 1,6-Bisphosphate Aldolases. ACS Medicinal Chemistry Letters, 2011, 2, 804-808.	1.3	8
22	Glycolytic and Non-glycolytic Functions of Mycobacterium tuberculosis Fructose-1,6-bisphosphate Aldolase, an Essential Enzyme Produced by Replicating and Non-replicating Bacilli. Journal of Biological Chemistry, 2011, 286, 40219-40231.	1.6	69
23	Dramatic improvement of crystal quality for low-temperature-grown rabbit muscle aldolase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 595-600.	0.7	1
24	Crystal Structures of DNA-Whirly Complexes and Their Role in <i>Arabidopsis</i> Organelle Genome Repair Â. Plant Cell, 2010, 22, 1849-1867.	3.1	116
25	Structure of a Class I Tagatose-1,6-bisphosphate Aldolase. Journal of Biological Chemistry, 2010, 285, 21143-21152.	1.6	22
26	Mechanism of Aldolase Control of Sorting Nexin 9 Function in Endocytosis. Journal of Biological Chemistry, 2010, 285, 11983-11990.	1.6	32
27	Rational Design, Synthesis, and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc) Tj ETQq1 1 0.78	34314 rgB	T /Gyerlock 1
28	Crystal Structures of the Organomercurial Lyase MerB in Its Free and Mercury-bound Forms. Journal of Biological Chemistry, 2009, 284, 938-944.	1.6	49
29	Charge Stabilization and Entropy Reduction of Central Lysine Residues in Fructose-Bisphosphate Aldolase. Biochemistry, 2009, 48, 4528-4537.	1.2	21
30	Aldolase Is Essential for Energy Production and Bridging Adhesin-Actin Cytoskeletal Interactions during Parasite Invasion of Host Cells. Cell Host and Microbe, 2009, 5, 353-364.	5.1	110
31	Purification, crystallization and preliminary X-ray diffraction analysis of the Whirly domain of StWhy2 in complex with single-stranded DNA. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1056-1059.	0.7	4
32	Synthesis and Biochemical Evaluation of Selective Inhibitors of Classâ€II Fructose Bisphosphate Aldolases: Towards New Synthetic Antibiotics. Chemistry - A European Journal, 2008, 14, 8521-8529.	1.7	28
33	Separate synthesis and evaluation of glucitol bis-phosphate and mannitol bis-phosphate, as competitive inhibitors of fructose bis-phosphate aldolases. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1735-1737.	1.0	12
34	A Hydrophobic Pocket in the Active Site of Glycolytic Aldolase Mediates Interactions with Wiskott-Aldrich Syndrome Protein. Journal of Biological Chemistry, 2007, 282, 14309-14315.	1.6	26
35	Stereospecific Proton Transfer by a Mobile Catalyst in Mammalian Fructose-1,6-bisphosphate Aldolase. Journal of Biological Chemistry, 2007, 282, 31028-31037.	1.6	27
36	Carboxy-Terminus Recruitment Induced by Substrate Binding in Eukaryotic Fructose Bis-phosphate Aldolases,. Biochemistry, 2007, 46, 9533-9540.	1.2	11

JURGEN SYGUSCH

#	Article	IF	CITATIONS
37	Selective Irreversible Inhibition of Fructose 1,6-Bisphosphate Aldolase fromTrypanosoma brucei. Journal of Medicinal Chemistry, 2006, 49, 1499-1502.	2.9	37
38	High Resolution Reaction Intermediates of Rabbit Muscle Fructose-1,6-bisphosphate Aldolase. Journal of Biological Chemistry, 2005, 280, 27262-27270.	1.6	59
39	Hydroxynaphthaldehyde Phosphate Derivatives as Potent Covalent Schiff Base Inhibitors of Fructose-1,6-bisphosphate Aldolase. Biochemistry, 2005, 44, 5430-5443.	1.2	18
40	Induced Fit Movements and Metal Cofactor Selectivity of Class II Aldolases. Journal of Biological Chemistry, 2004, 279, 11825-11833.	1.6	34
41	Purification, crystallization and preliminary X-ray analysis of native and selenomethionine class I tagatose-1,6-bisphosphate aldolase fromStreptococcus pyogenes. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 528-530.	2.5	2
42	A Conserved Glutamate Residue Exhibits Multifunctional Catalytic Roles in d-Fructose-1,6-bisphosphate Aldolases. Journal of Biological Chemistry, 2002, 277, 9474-9483.	1.6	42
43	Crystallization and preliminary X-ray crystallographic analysis of p24, a component of the potato nuclear factor PBF-2. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 296-298.	2.5	6
44	A new family of plant transcription factors displays a novel ssDNA-binding surface. Nature Structural Biology, 2002, 9, 512-517.	9.7	90
45	Molecular Cloning, Expression, Purification, and Characterization of Fructose-1,6-bisphosphate Aldolase from Thermus aquaticus. Protein Expression and Purification, 2001, 21, 293-302.	0.6	27
46	Crystallization and preliminary X-ray analysis of native and selenomethionine fructose-1,6-bisphosphate aldolase fromThermus aquaticus. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 310-313.	2.5	4
47	Mosaic spread analysis of Canadian advanced protein crystallization experiment on the Russian space station, Mir. Journal of Crystal Growth, 2001, 232, 520-535.	0.7	8
48	Expression, Purification, and Characterization of Natural Mutants of Human Aldolase B. Journal of Biological Chemistry, 2000, 275, 1145-1151.	1.6	40
49	Magnetic space shuttle experiments. Journal of Magnetism and Magnetic Materials, 1999, 194, 96-101.	1.0	2
50	Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337→Val) in fructose intolerance. Biochemical Journal, 1999, 340, 321-327.	1.7	15
51	Alteration of substrate specificity by a naturally-occurring aldolase B mutation (Ala337→Val) in fructose intolerance. Biochemical Journal, 1999, 340, 321.	1.7	6
52	Inhibition of rabbit muscle aldolase by phosphorylated aromatic compounds. Biochemical Journal, 1997, 323, 71-77.	1.7	39
53	Subunit interaction in mammalian aldolases. Biochemical Journal, 1997, 323, 671-676.	1.7	3
54	Allosteric communication in mammalian muscle aldolase. Biochemical Journal, 1997, 327, 717-720.	1.7	14

JURGEN SYGUSCH

#	Article	IF	CITATIONS
55	Product binding and role of the C-terminal region in Class I D-fructose 1, 6-bisphosphate aldolase. Nature Structural and Molecular Biology, 1997, 4, 36-39.	3.6	108
56	High resolution fast quantitative docking using fourier domain correlation techniques. Proteins: Structure, Function and Bioinformatics, 1997, 27, 493-506.	1.5	30
57	Functional Characterization of an Extreme Thermophilic Class II Fructose-1,6-Bisphosphate Aldolase. FEBS Journal, 1996, 241, 243-248.	0.2	19
58	Protein crystallization in low gravity by step gradient diffusion method. Journal of Crystal Growth, 1996, 162, 167-172.	0.7	18
59	Novel active site in Escherichia coli fructose 1,6-bisphosphate aldolase. Nature Structural and Molecular Biology, 1996, 3, 856-862.	3.6	80