Yun Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5568168/publications.pdf Version: 2024-02-01

VUN ZHENC

#	Article	IF	CITATIONS
1	Eutectic Etching toward Inâ€Plane Porosity Manipulation of Clâ€Terminated MXene for Highâ€Performance Dualâ€Ion Battery Anode. Advanced Energy Materials, 2022, 12, 2102493.	19.5	37
2	2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	21.0	45
3	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	21.0	52
4	Bioinspired Tough Solidâ€State Electrolyte for Flexible Ultralongâ€Life Zinc–Air Battery. Advanced Materials, 2022, 34, e2110585.	21.0	58
5	Hierarchically Nanostructured Solidâ€State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
6	Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	2.0	13
7	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	19.5	33
8	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	61
9	A Novel Solid Oxide Electrolysis Cell with Micro…Nano Channel Anode for Electrolysis at Ultraâ€High Current Density over 5 A cm ^{â^'2} . Advanced Energy Materials, 2022, 12, .	19.5	17
10	Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels. Electrochemical Energy Reviews, 2021, 4, 508-517.	25.5	69
11	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	19.5	105
12	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	11.2	95
13	Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy and Environmental Science, 2020, 13, 53-85.	30.8	178
14	Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells. Energy and Al, 2020, 2, 100027.	10.6	17
15	Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy, 2020, 78, 105236.	16.0	31
16	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	38.1	461
17	Measurement of oxygen reduction/evolution kinetics enhanced (La,Sr)CoO3/(La,Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs. International Journal of Hydrogen Energy, 2019, 44, 19102-19112.	7.1	7
18	Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction. Nano Energy, 2019, 62, 521-529.	16.0	35

Yun Zheng

#	Article	IF	CITATIONS
19	Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering. Nano Energy, 2019, 62, 64-78.	16.0	75
20	Uncovering the Effect of Lattice Strain and Oxygen Deficiency on Electrocatalytic Activity of Perovskite Cobaltite Thin Films. Advanced Science, 2019, 6, 1801898.	11.2	136
21	Impact of Strain-Induced Changes in Defect Chemistry on Catalytic Activity of Nd ₂ NiO _{4+l´} Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 36926-36932.	8.0	31
22	Microâ€∤Nanohoneycomb Solid Oxide Electrolysis Cell Anodes with Ultralarge Current Tolerance. Advanced Energy Materials, 2018, 8, 1802203.	19.5	40
23	Segregation Induced Selfâ€Assembly of Highly Active Perovskite for Rapid Oxygen Reduction Reaction. Advanced Energy Materials, 2018, 8, 1801893.	19.5	30
24	Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-Î′/Nd0.8Sr1.2CoO4±Î′ heterointerfaces. Nano Energy, 2018, 51, 711-720.	16.0	60
25	A review of high temperature co-electrolysis of H ₂ O and CO ₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 2017, 46, 1427-1463.	38.1	515
26	Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 2017, 40, 512-539.	16.0	221
27	Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 2017, 46, 6345-6378.	38.1	246
28	Solid oxide fuel cell system for automobiles. International Journal of Green Energy, 0, , 1-10.	3.8	9