
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5567936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MaveRegistry: a collaboration platform for multiplexed assays of variant effect. Bioinformatics, 2021, 37, 3382-3383.	1.8	9
2	Seeds of their own destruction: Dominant-negative peptide screening yields functional insight and therapeutic leads. Cell Systems, 2021, 12, 691-693.	2.9	4
3	Shifting landscapes of human MTHFR missense-variant effects. American Journal of Human Genetics, 2021, 108, 1283-1300.	2.6	33
4	Improved pathogenicity prediction for rare human missense variants. American Journal of Human Genetics, 2021, 108, 1891-1906.	2.6	51
5	Prioritizing genes for systematic variant effect mapping. Bioinformatics, 2021, 36, 5448-5455.	1.8	9
6	Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Systems, 2020, 10, 25-38.e10.	2.9	18
7	MaveQuest: a web resource for planning experimental tests of human variant effects. Bioinformatics, 2020, 36, 3938-3940.	1.8	7
8	Interrogation of kinase genetic interactions provides a global view of PAK1-mediated signal transduction pathways. Journal of Biological Chemistry, 2020, 295, 16906-16919.	1.6	4
9	A Comprehensive, Flexible Collection of SARS-CoV-2 Coding Regions. G3: Genes, Genomes, Genetics, 2020, 10, 3399-3402.	0.8	48
10	Yeast-Based Genetic Interaction Analysis of Human Kinome. Cells, 2020, 9, 1156.	1.8	5
11	Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nature Cell Biology, 2020, 22, 498-511.	4.6	154
12	A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Medicine, 2020, 12, 13.	3.6	45
13	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
14	Systematic analysis of bypass suppression of essential genes. Molecular Systems Biology, 2020, 16, e9828.	3.2	45
15	Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact. ELife, 2020, 9, .	2.8	58
16	Assessing predictions on fitness effects of missense variants in calmodulin. Human Mutation, 2019, 40, 1463-1473.	1.1	8
17	Quantifying immune-based counterselection of somatic mutations. PLoS Genetics, 2019, 15, e1008227.	1.5	14
18	MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biology, 2019, 20, 223.	3.8	130

#	Article	IF	CITATIONS
19	Characterizing ABC-Transporter Substrate-Likeness Using a Clean-Slate Genetic Background. Frontiers in Pharmacology, 2019, 10, 448.	1.6	1
20	A web application and service for imputing and visualizing missense variant effect maps. Bioinformatics, 2019, 35, 3191-3193.	1.8	13
21	CNTN5-/+or EHMT2-/+human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. ELife, 2019, 8, .	2.8	72
22	Modeling the impact of drug interactions on therapeutic selectivity. Nature Communications, 2018, 9, 3452.	5.8	18
23	Mapping <scp>DNA</scp> damageâ€dependent genetic interactions in yeast via party mating and barcode fusion genetics. Molecular Systems Biology, 2018, 14, e7985.	3.2	25
24	The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Molecular and Cellular Proteomics, 2018, 17, 1948-1964.	2.5	116
25	Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Human Genetics, 2018, 137, 665-678.	1.8	91
26	Yeast genetic interaction screen of human genes associated with amyotrophic lateral sclerosis: identification of MAP2K5 kinase as a potential drug target. Genome Research, 2017, 27, 1487-1500.	2.4	12
27	A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and <i>N</i> ¹ -methyladenosine modification. Rna, 2017, 23, 270-283.	1.6	16
28	Assessing predictions of fitness effects of missense mutations in SUMO onjugating enzyme UBE2I. Human Mutation, 2017, 38, 1051-1063.	1.1	12
29	Variant Interpretation: Functional Assays to the Rescue. American Journal of Human Genetics, 2017, 101, 315-325.	2.6	275
30	Quantitative analysis of protein interaction network dynamics in yeast. Molecular Systems Biology, 2017, 13, 934.	3.2	41
31	A framework for exhaustively mapping functional missense variants. Molecular Systems Biology, 2017, 13, 957.	3.2	146
32	CRISPR/Cas9 System as a Valuable Genome Editing Tool for Wine Yeasts with Application to Decrease Urea Production. Frontiers in Microbiology, 2017, 8, 2194.	1.5	46
33	Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genetics, 2017, 13, e1006779.	1.5	30
34	Systematic identification of phosphorylation-mediated protein interaction switches. PLoS Computational Biology, 2017, 13, e1005462.	1.5	44
35	An interâ€species protein–protein interaction network across vast evolutionary distance. Molecular Systems Biology, 2016, 12, 865.	3.2	42
36	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	3.2	102

#	Article	IF	CITATIONS
37	Taking Exception to Human Eugenics. Genetics, 2016, 204, 821-823.	1.2	6
38	An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Research, 2016, 26, 670-680.	2.4	116
39	Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nature Chemical Biology, 2016, 12, 867-875.	3.9	79
40	Exploring genetic suppression interactions on a global scale. Science, 2016, 354, .	6.0	157
41	A Proteome-wide Fission Yeast Interactome Reveals Network Evolution Principles from Yeasts to Human. Cell, 2016, 164, 310-323.	13.5	106
42	Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell, 2016, 164, 805-817.	13.5	479
43	SELPHI: correlation-based identification of kinase-associated networks from global phospho-proteomics data sets. Nucleic Acids Research, 2015, 43, W276-W282.	6.5	24
44	Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations. PLoS Computational Biology, 2015, 11, e1004147.	1.5	59
45	Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders. Cell, 2015, 161, 647-660.	13.5	482
46	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	13.5	1,339
47	Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nature Methods, 2015, 12, 154-159.	9.0	96
48	Biomolecular Network Structure and Function. , 2015, , 1-25.		0
49	Synergy and Selectivity of Antifungal Small Molecule Combinations. FASEB Journal, 2015, 29, 773.13.	0.2	0
50	Prioritizing causal disease genes using unbiased genomic features. Genome Biology, 2014, 15, 534.	3.8	40
51	Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nature Communications, 2014, 5, 3650.	5.8	131
52	The Insertion Green Monster (iGM) Method for Expression of Multiple Exogenous Genes in Yeast. G3: Genes, Genomes, Genetics, 2014, 4, 1183-1191.	0.8	14
53	A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains. Cell, 2014, 159, 1511-1523.	13.5	546
54	Novel cardiovascular gene functions revealed via systematic phenotype prediction in zebrafish. Development (Cambridge), 2014, 141, 224-235.	1.2	22

FREDERICK P ROTH

#	Article	IF	CITATIONS
55	Large-Scale Identification and Analysis of Suppressive Drug Interactions. Chemistry and Biology, 2014, 21, 541-551.	6.2	27
56	A Proteome-Scale Map of the Human Interactome Network. Cell, 2014, 159, 1212-1226.	13.5	1,199
57	Target-Independent Prediction of Drug Synergies Using Only Drug Lipophilicity. Journal of Chemical Information and Modeling, 2014, 54, 2286-2293.	2.5	30
58	Systems biology and the analysis of genetic variation. Current Opinion in Genetics and Development, 2013, 23, 599-601.	1.5	3
59	Interactome Networks. , 2013, , 45-63.		5
60	ChromoZoom: a flexible, fluid, web-based genome browser. Bioinformatics, 2013, 29, 384-386.	1.8	14
61	RanBP2/Nup358 Potentiates the Translation of a Subset of mRNAs Encoding Secretory Proteins. PLoS Biology, 2013, 11, e1001545.	2.6	61
62	Cross-Species Protein Interactome Mapping Reveals Species-Specific Wiring of Stress Response Pathways. Science Signaling, 2013, 6, ra38.	1.6	47
63	Viral Perturbations of Host Networks Reflect Disease Etiology. PLoS Computational Biology, 2012, 8, e1002531.	1.5	102
64	A Resource of Quantitative Functional Annotation for Homo sapiens Genes. G3: Genes, Genomes, Genetics, 2012, 2, 223-233.	0.8	6
65	The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions. Journal of Visualized Experiments, 2012, , e4072.	0.2	12
66	Introns in UTRs: Why we should stop ignoring them. BioEssays, 2012, 34, 1025-1034.	1.2	119
67	Genome Rearrangements Caused by Depletion of Essential DNA Replication Proteins in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 192, 147-160.	1.2	25
68	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	13.7	349
69	Response to "MHCâ€dependent mate choice in humans: Why genomic patterns from the HapMap European American data set support the hypothesis―(DOI: 10.1002/bies.201100150). BioEssays, 2012, 34, 576-577.	1.2	7
70	Evidence for Network Evolution in an <i>Arabidopsis</i> Interactome Map. Science, 2011, 333, 601-607.	6.0	838
71	Systematic exploration of synergistic drug pairs. Molecular Systems Biology, 2011, 7, 544.	3.2	284
72	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	6.0	776

#	Article	IF	CITATIONS
73	Identification of Neuronal RNA Targets of TDP-43-containing Ribonucleoprotein Complexes. Journal of Biological Chemistry, 2011, 286, 1204-1215.	1.6	366
74	PERSONALIZED MEDICINE: FROM GENOTYPES AND MOLECULAR PHENOTYPES TOWARDS COMPUTED THERAPY. , 2011, , .		0
75	Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection. Nature Methods, 2011, 8, 159-164.	9.0	74
76	Next-generation sequencing to generate interactome datasets. Nature Methods, 2011, 8, 478-480.	9.0	258
77	Reconstitution of human RNA interference in budding yeast. Nucleic Acids Research, 2011, 39, e43-e43.	6.5	26
78	Discovering the Targets of Drugs Via Computational Systems Biology. Journal of Biological Chemistry, 2011, 286, 23653-23658.	1.6	29
79	Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes. PLoS Genetics, 2011, 7, e1001366.	1.5	73
80	The Genetic Landscape of a Cell. Science, 2010, 327, 425-431.	6.0	1,937
81	Metabolic Signatures of Exercise in Human Plasma. Science Translational Medicine, 2010, 2, 33ra37.	5.8	337
82	The Tandem Inversion Duplication in <i>Salmonella enterica</i> : Selection Drives Unstable Precursors to Final Mutation Types. Genetics, 2010, 185, 65-80.	1.2	43
83	FuncBase : a resource for quantitative gene function annotation. Bioinformatics, 2010, 26, 1806-1807.	1.8	14
84	Interpreting Metabolomic Profiles using Unbiased Pathway Models. PLoS Computational Biology, 2010, 6, e1000692.	1.5	52
85	Absence of Evidence for MHC–Dependent Mate Selection within HapMap Populations. PLoS Genetics, 2010, 6, e1000925.	1.5	35
86	Numerous Conserved and Divergent MicroRNAs Expressed by Herpes Simplex Viruses 1 and 2. Journal of Virology, 2010, 84, 4659-4672.	1.5	145
87	Genome-wide functional analysis of human 5' untranslated region introns. Genome Biology, 2010, 11, R29.	13.9	68
88	A Genome-Wide Gene Function Prediction Resource for Drosophila melanogaster. PLoS ONE, 2010, 5, e12139.	1.1	17
89	Large-scale RACE approach for proactive experimental definition of C. elegans ORFeome. Genome Research, 2009, 19, 2334-2342.	2.4	12
90	Quantitative phenotyping via deep barcode sequencing. Genome Research, 2009, 19, 1836-1842.	2.4	275

#	Article	IF	CITATIONS
91	Next generation software for functional trend analysis. Bioinformatics, 2009, 25, 3043-3044.	1.8	248
92	Pathways of the Heart. Circulation: Cardiovascular Genetics, 2009, 2, 303-305.	5.1	2
93	Q&A: Epistasis. Journal of Biology, 2009, 8, 35.	2.7	32
94	Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nature Methods, 2009, 6, 47-54.	9.0	260
95	An empirical framework for binary interactome mapping. Nature Methods, 2009, 6, 83-90.	9.0	800
96	An experimentally derived confidence score for binary protein-protein interactions. Nature Methods, 2009, 6, 91-97.	9.0	397
97	Literature-curated protein interaction datasets. Nature Methods, 2009, 6, 39-46.	9.0	288
98	Biomolecular Network Structure and Function. , 2009, , 570-589.		0
99	Isoform discovery by targeted cloning, 'deep-well' pooling and parallel sequencing. Nature Methods, 2008, 5, 597-600.	9.0	30
100	High-Quality Binary Protein Interaction Map of the Yeast Interactome Network. Science, 2008, 322, 104-110.	6.0	1,297
101	A race through the maze of genomic evidence. Genome Biology, 2008, 9, S1.	3.8	11
102	Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biology, 2008, 9, S7.	13.9	78
103	A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 2008, 9, S2.	13.9	214
104	An en masse phenotype and function prediction system for Mus musculus. Genome Biology, 2008, 9, S8.	13.9	20
105	Chemical substructures that enrich for biological activity. Bioinformatics, 2008, 24, 2518-2525.	1.8	279
106	A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis. Cell, 2008, 134, 534-545.	13.5	196
107	A <i>C. elegans</i> genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes and Development, 2008, 22, 2535-2549.	2.7	207
108	Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L16-L22.	1.3	73

#	Article	IF	CITATIONS
109	The Synergizer service for translating gene, protein and other biological identifiers. Bioinformatics, 2008, 24, 2272-2273.	1.8	48
110	Defining genetic interaction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3461-3466.	3.3	399
111	Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. Journal of Clinical Investigation, 2008, 118, 3503-3512.	3.9	244
112	Systematic quantitative function annotation of mouse genes. FASEB Journal, 2008, 22, 100.3.	0.2	0
113	Confirmation of Organized Modularity in the Yeast Interactome. PLoS Biology, 2007, 5, e153.	2.6	86
114	Genetic interaction screens advance in reverse. Genes and Development, 2007, 21, 137-142.	2.7	8
115	Functional Specificity among Ribosomal Proteins Regulates Gene Expression. Cell, 2007, 131, 557-571.	13.5	323
116	Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 2007, 25, 663-668.	9.4	286
117	Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nature Genetics, 2007, 39, 199-206.	9.4	294
118	Probabilistic Paths for Protein Complex Inference. Lecture Notes in Computer Science, 2007, , 14-28.	1.0	6
119	Using High-Throughput Screening Data To Discriminate Compounds with Single-Target Effects from Those with Side Effects. Journal of Chemical Information and Modeling, 2006, 46, 1549-1562.	2.5	26
120	Systematic genetics swims forward elegantly. Molecular Systems Biology, 2006, 2, 48.	3.2	2
121	Mammalian ultraconserved elements are strongly depleted among segmental duplications and copy number variants. Nature Genetics, 2006, 38, 1216-1220.	9.4	105
122	Query Chem: a Google-powered web search combining text and chemical structures. Bioinformatics, 2006, 22, 1670-1673.	1.8	16
123	Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature, 2005, 436, 861-865.	13.7	260
124	Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437, 1173-1178.	13.7	2,676
125	Discovering functional relationships: biochemistry versus genetics. Trends in Genetics, 2005, 21, 424-427.	2.9	22
126	Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. Journal of Biology, 2005, 4, 6.	2.7	154

FREDERICK P ROTH

#	Article	IF	CITATIONS
127	Transcriptional Compensation for Gene Loss Plays a Minor Role in Maintaining Genetic Robustness in Saccharomyces cerevisiae. Genetics, 2005, 171, 829-833.	1.2	22
128	Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress in Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 1343-1352.	3.4	68
129	Metabolomic Identification of Novel Biomarkers of Myocardial Ischemia. Circulation, 2005, 112, 3868-3875.	1.6	443
130	Chipper: discovering transcription-factor targets from chromatin immunoprecipitation microarrays using variance stabilization. Genome Biology, 2005, 6, R96.	13.9	37
131	Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura. Bioinformatics, 2004, 20, 2738-2750.	1.8	59
132	Predicting Protein Complex Membership Using Probabilistic Network Reliability. Genome Research, 2004, 14, 1170-1175.	2.4	166
133	Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nature Biotechnology, 2004, 22, 214-219.	9.4	294
134	Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 2004, 430, 88-93.	13.7	1,683
135	Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 2004, 5, 38.	1.2	139
136	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
137	SILVER helps assign peptides to tandem mass spectra using intensity-based scoring. Journal of the American Society for Mass Spectrometry, 2004, 15, 910-912.	1.2	24
138	A Map of the Interactome Network of the Metazoan C. elegans. Science, 2004, 303, 540-543.	6.0	1,587
139	Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15682-15687.	3.3	225
140	Predicting Gene Function From Patterns of Annotation. Genome Research, 2003, 13, 896-904.	2.4	121
141	Characterizing gene sets with FuncAssociate. Bioinformatics, 2003, 19, 2502-2504.	1.8	431
142	GoFish finds genes with combinations of Gene Ontology attributes. Bioinformatics, 2003, 19, 788-789.	1.8	14
143	Latent Herpes Simplex Virus Infection of Sensory Neurons Alters Neuronal Gene Expression. Journal of Virology, 2003, 77, 9533-9541.	1.5	58
144	Assessing experimentally derived interactions in a small world. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4372-4376.	3.3	387

FREDERICK P ROTH

#	Article	IF	CITATIONS
145	Predicting phenotype from patterns of annotation. Bioinformatics, 2003, 19, i183-i189.	1.8	27
146	Regulating General Mutation Rates: Examination of the Hypermutable State Model for Cairnsian Adaptive Mutation. Genetics, 2003, 163, 1483-1496.	1.2	55
147	Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation. Genome Research, 2002, 12, 1574-1581.	2.4	259
148	The Genome-Wide Localization of Rsc9, a Component of the RSC Chromatin-Remodeling Complex, Changes in Response to Stress. Molecular Cell, 2002, 9, 563-573.	4.5	135
149	Bringing Out the Best Features of Expression Data. Genome Research, 2001, 11, 1801-1802.	2.4	10
150	Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 1998, 16, 939-945.	9.4	835