Stefan Baunack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5567663/publications.pdf

Version: 2024-02-01

172207 174990 2,866 95 29 52 citations h-index g-index papers 99 99 99 4104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Application of factor analysis in electron spectrometry (AES, XPS) for materials science. International Journal of Materials Research, 2022, 96, 972-982.	0.1	O
2	Tailoring electron beams with high-frequency self-assembled magnetic charged particle micro optics. Nature Communications, 2022, 13 , .	5.8	6
3	Digital Electrochemistry for Onâ€Chip Heterogeneous Material Integration. Advanced Materials, 2021, 33, e2101272.	11.1	19
4	Digital Electrochemistry: Digital Electrochemistry for Onâ€Chip Heterogeneous Material Integration (Adv. Mater. 26/2021). Advanced Materials, 2021, 33, 2170204.	11.1	0
5	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	7.3	57
6	Selfâ€Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1901051.	5.6	39
7	Microwave Radiation Detection with an Ultrathin Free-Standing Superconducting Niobium Nanohelix. ACS Nano, 2019, 13, 2948-2955.	7.3	28
8	Nanoporous Copper Pattern Fabricated by Electron Beam Irradiation on Cu 3 N Film for SERS Application. Physica Status Solidi (B): Basic Research, 2019, 256, 1800378.	0.7	8
9	Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility. Nano Energy, 2017, 33, 387-392.	8.2	42
10	Evidence for self-organized formation of logarithmic spirals during explosive crystallization of amorphous Ge:Mn layers. Journal of Applied Physics, 2017, 121, 184901.	1.1	1
11	In-Plane Thermal Conductivity of Radial and Planar Si/SiO _{<i>x</i>} Hybrid Nanomembrane Superlattices. ACS Nano, 2017, 11, 8215-8222.	7.3	18
12	Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States. ACS Applied Materials & Strain States, 2017, 9, 42372-42382.	4.0	3
13	Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes. RSC Advances, 2016, 6, 72568-72574.	1.7	3
14	Stretchable Electronics: Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics (Adv. Mater. 8/2015). Advanced Materials, 2015, 27, 1306-1306.	11,1	1
15	Biomimetic Microelectronics for Regenerative Neuronal Cuff Implants. Advanced Materials, 2015, 27, 6797-6805.	11.1	86
16	Flexible Electronics: Highâ€Performance Magnetic Sensorics for Printable and Flexible Electronics (Adv. Mater. 5/2015). Advanced Materials, 2015, 27, 955-955.	11.1	1
17	Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics. Advanced Materials, 2015, 27, 1333-1338.	11.1	69
18	Highâ€Performance Liâ€O ₂ Batteries with Trilayered Pd/MnO <i>_x</i> /Pd Nanomembranes. Advanced Science, 2015, 2, 1500113.	5.6	55

#	Article	IF	Citations
19	Selfâ€Assembled Onâ€Chipâ€Integrated Giant Magnetoâ€Impedance Sensorics. Advanced Materials, 2015, 27, 6582-6589.	11.1	99
20	Highly photocatalytic TiO2interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26, 364001.	1.3	19
21	Wearable Magnetic Field Sensors for Flexible Electronics. Advanced Materials, 2015, 27, 1274-1280.	11.1	201
22	Highâ€Performance Magnetic Sensorics for Printable and Flexible Electronics. Advanced Materials, 2015, 27, 880-885.	11.1	87
23	Thermal transport through short-period SiGe nanodot superlattices. Journal of Applied Physics, 2014, 115, 044312.	1.1	22
24	Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Advanced Materials, 2014, 26, 4527-4532.	11.1	141
25	Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Scientific Reports, 2014, 4, 7452.	1.6	83
26	Sandwich-Stacked SnO ₂ /Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7, 6948-6954.	7.3	99
27	Naturally Rolledâ€Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithiumâ€Ion Batteries with Remarkable Cycling Performance. Angewandte Chemie - International Edition, 2013, 52, 2326-2330.	7.2	181
28	Dynamic Molecular Processes Detected by Microtubular Optoâ€chemical Sensors Selfâ€Assembled from Prestrained Nanomembranes. Advanced Materials, 2013, 25, 2357-2361.	11.1	44
29	Exchange bias related coercivity enhancement as a characterization tool. Journal of Applied Physics, 2012, 112, 123917.	1.1	7
30	Nanomembrane Quantumâ€Lightâ€Emitting Diodes Integrated onto Piezoelectric Actuators. Advanced Materials, 2012, 24, 2668-2672.	11.1	111
31	Stretchable Magnetoelectronics. Nano Letters, 2011, 11, 2522-2526.	4.5	150
32	Rolled-up tubes and cantilevers by releasing SrRuO3-Pr0.7Ca0.3MnO3 nanomembranes. Nanoscale Research Letters, 2011, 6, 621.	3.1	16
33	Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fieldsâ€"Properties of deposited thin films. Electrochimica Acta, 2010, 55, 819-831.	2.6	39
34	Comparing properties of substrate-constrained and freestanding epitaxial Ni–Mn–Ga films. Acta Materialia, 2010, 58, 3415-3421.	3.8	73
35	Corrosion and pitting behaviour of ultrafine eutectic Ti–Fe–Sn alloys. Journal of Alloys and Compounds, 2010, 503, 19-24.	2.8	12

Corrosion behavior of the bulk glassy (Fe_{44.3}Cr₅Cosub>5</sub>Mo_{12.8}Mn_{11.2}C_{15.8}8</sub>99</sub>)<ali>alloy. Journal of Materials Research, 2009, 24, 1471-1479.

#	Article	IF	CITATIONS
37	Influence of incorporated non-metallic impurities on electromigration in copper damascene interconnect lines. Thin Solid Films, 2009, 517, 2687-2690.	0.8	17
38	Fabrication and optical properties of C/\hat{l}^2 -SiC/Si hybrid rolled-up microtubes. Journal of Applied Physics, 2009, 105, 016103.	1.1	13
39	The effect of magnetic fields on the electrodeposition of CoFe alloys. Magnetohydrodynamics, 2009, 45, 259-266.	0.5	3
40	Dimensional behaviour of aluminium sintered in different atmospheres. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 251-256.	2.6	45
41	Electron Transfer Kinetics at Oxide Films on Metallic Biomaterials. Journal of the Electrochemical Society, 2007, 154, C508.	1.3	37
42	Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectronic Engineering, 2007, 84, 54-59.	1.1	84
43	Pitting corrosion of zirconium-based bulk glass-matrix composites. Materials Science & Discrete & Discrete Science & Discrete & Di	2.6	44
44	Quantitative nitrogen analysis by Auger electron spectrometry and glow discharge optical emission spectrometry. Mikrochimica Acta, 2006, 156, 69-72.	2.5	10
45	XPS and AES investigations of hard magnetic Nd–Fe–B films. Applied Surface Science, 2005, 252, 218-222.	3.1	7
46	Effect of sulphur on cube texture formation in microalloyed nickel substrate tapes. Physica C: Superconductivity and Its Applications, 2005, 418, 9-15.	0.6	11
47	Depth profile and interface analysis in the nm-range. Applied Surface Science, 2005, 252, 3-10.	3.1	35
48	Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling. Applied Surface Science, 2005, 252, 162-166.	3.1	30
49	Analysis of Mg–B compounds by means of Auger electron microprobe. Applied Surface Science, 2005, 252, 167-171.	3.1	1
50	Influence of oxygen and copper in electrodeposited FePt films. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1270-1273.	1.0	23
51	Investigation of a Ta–Si–O/Ta–Si–N bilayer system for embedded SAW finger structures. Microelectronic Engineering, 2005, 82, 301-306.	1.1	5
52	Application of factor analysis in electron spectrometry (AES, XPS) for materials science. International Journal of Materials Research, 2005, 96, 972-982.	0.8	2
53	Electrochemical response of Fe65.5Cr4Mo4Ga4P12 C5B5.5 bulk amorphous alloy in different aqueous media. Materials and Corrosion - Werkstoffe Und Korrosion, 2004, 55, 36-42.	0.8	19
54	Corrosion behaviour of the Mg65Y10Cu15Ag10 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 280-284.	2.6	27

#	Article	IF	CITATIONS
55	The ion exchange promoted interfacial strength in magnesium based composites. Journal of Alloys and Compounds, 2004, 378, 127-131.	2.8	6
56	Pitting corrosion of bulk glass-forming zirconium-based alloys. Journal of Alloys and Compounds, 2004, 377, 290-297.	2.8	104
57	AES and SIMS investigation of diffusion barriers for copper metallization in power-SAW devices. Analytical and Bioanalytical Chemistry, 2003, 375, 891-895.	1.9	10
58	Characterization of oxide layers on amorphous Mg-based alloys by Auger electron spectroscopy with sputter depth profiling. Analytical and Bioanalytical Chemistry, 2003, 375, 896-901.	1.9	3
59	Comparison of depth profiling techniques using ion sputtering from the practical point of view. Thin Solid Films, 2003, 425, 9-19.	0.8	46
60	Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy. Corrosion Science, 2003, 45, 817-832.	3.0	64
61	Stability of the Mg ₆₅ Y ₁₀ Cu ₁₅ Ag ₁₀ metallic glass in neutral and weakly acidic media. Journal of Materials Research, 2003, 18, 97-105.	1.2	14
62	Thermally induced modification of GMR in Co/Cu multilayers: correlation among structural, transport, and magnetic properties. Journal Physics D: Applied Physics, 2003, 36, 564-572.	1.3	33
63	Characterization of laser-irradiated YNi 2 B 2 C surfaces by Auger electron spectroscopy. Analytical and Bioanalytical Chemistry, 2002, 374, 681-684.	1.9	2
64	Model investigations on the effect of Si transport on the nanocrystallization of amorphous FeSiB-(Cu,Nb). Analytical and Bioanalytical Chemistry, 2002, 374, 736-741.	1.9	2
65	Interdiffusion, stress, and microstructure evolution during annealing in Co/Cu/Co trilayers. Journal of Applied Physics, 2002, 91, 9696.	1.1	10
66	Auger spectroscopy study of MgLi melt affected carbon/pyrocarbon fibres. Applied Surface Science, 2001, 179, 129-132.	3.1	6
67	Oxidation of NiFe(20 wt.%) thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 86, 272-275.	1.7	22
68	AES depth profiling multilayers of 3d transition metals. Applied Surface Science, 2001, 179, 25-29.	3.1	6
69	AES analysis of failures in Cu based electromigration test samples. Applied Surface Science, 2001, 179, 245-250.	3.1	1
70	Interdiffusion in NiFe/Cu/NiFe trilayers: Possible failure mechanism for magnetoelectronic devices. Applied Physics Letters, 2000, 77, 358-360.	1.5	20
71	Oxidation, Diffusion and Segregation in CuNi(Mn) Films Studied by AES. Mikrochimica Acta, 2000, 133, 17-22.	2.5	7
72	XPS and SIMS Examination of Alumina Fibres Affected with Mg and MgLi Melt. Mikrochimica Acta, 2000, 133, 29-34.	2.5	5

#	Article	IF	Citations
73	Oxidation Behaviour of PACVD-(Ti,Al)N Wear Resistance Layers. Mikrochimica Acta, 2000, 133, 215-221.	2.5	2
74	Data Preprocessing in Peak Shape Analysis of Auger Electron Spectra. Mikrochimica Acta, 2000, 133, 307-312.	2.5	3
75	Abnormal grain growth of sputtered CuNi(Mn) thin films. Journal of Materials Research, 2000, 15, 1062-1068.	1.2	3
76	Mechanical Stress, Grain-boundary Relaxation, and Oxidation of Sputtered CuNi(Mn) Films. Journal of Materials Research, 1999, 14, 1286-1294.	1.2	9
77	Factor analysis and XPS-data preprocessing for non-conducting samples. Fresenius' Journal of Analytical Chemistry, 1999, 365, 59-62.	1.5	7
78	Surface characterisation of laser irradiated SiC ceramics by AES and XPS. Fresenius' Journal of Analytical Chemistry, 1999, 365, 173-177.	1.5	11
79	Hillock Growth Phenomena during Post-Indentation Annealing of Quasicrystalline AlPdMn. Physica Status Solidi A, 1999, 172, 317-327.	1.7	2
80	Electrical resistance and mechanical stress in NiCr/Cu/NiCr thin films. Journal of Applied Physics, 1999, 85, 935-940.	1.1	8
81	AES investigations of the iron surface composition after laser irradiation under atmospheric conditions. Mikrochimica Acta, 1998, 130, 89-95.	2.5	1
82	<title>Laser modification of iron under atmospheric conditions: a study on target surface composition and laser-induced plasma</title> ., 1998, 3343, 939.		0
83	In-situ fracture investigations of MgLi-carbon fibre composite materials by AES and data analysis by means of factor and cluster analysis. Fresenius' Journal of Analytical Chemistry, 1997, 357, 886-893.	1.5	2
84	Quantitative depth profiling of thin layers. Fresenius' Journal of Analytical Chemistry, 1997, 358, 25-31.	1.5	21
85	TEM study of the fibre cross-section attack in ?-Al2O3/Mg8Li metal matrix composites. Mikrochimica Acta, 1997, 127, 243-252.	2.5	6
86	In-situ characterization of MgLi composite materials by means of AES and factor analysis. Mikrochimica Acta, 1997, 125, 245-249.	2.5	1
87	Adjustment of temperature coefficient of resistance in NiCr/CuNi(Mn)/NiCr films. Journal of Applied Physics, 1996, 79, 8516-8520.	1.1	23
88	Resistance behaviour and interdiffusion of layered CuNi-NiCr films. Thin Solid Films, 1995, 258, 236-246.	0.8	19
89	Oxidation behaviour of Cu-Ni(Mn) (constantan) films. Thin Solid Films, 1995, 258, 252-259.	0.8	26
90	Description of sputter removal during auger depth profiling of rough oxide layers. Fresenius' Journal of Analytical Chemistry, 1994, 349, 214-215.	1.5	0

STEFAN BAUNACK

#	Article	IF	CITATIONS
91	Electron beam-induced decomposition of MBE grown CaF2 films: an AES study. Vacuum, 1990, 41, 1003-1005.	1.6	2
92	Electron-beam-induced decomposition and oxidation of thin CaF2-layers on Si(111) Studied by auger electron spectroscopy. Surface Science, 1990, 225, 292-300.	0.8	13
93	A study of UV/Ozone cleaning procedure for silicon surfaces. Physica Status Solidi A, 1989, 115, 223-227.	1.7	27
94	Results on low pressure oxygen adsorption on a Pt60Re40 alloy sample: A SIMS and XPS study. Surface Science, 1988, 203, L682-L688.	0.8	10
95	Low pressure oxygen adsorption induced Re segregation on an annealed Ptâ^Re alloy: A sims and aes study. Surface Science, 1987, 184, L361-L369.	0.8	7