Mehdi Pejman

List of Publications by Citations

Source: https://exaly.com/author-pdf/5567353/mehdi-pejman-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6 papers citations 4 h-index 9-index

6 g-index

8.3 2.71 ext. papers ext. citations avg, IF L-index

#	:	Paper	IF	Citations
6	,	Improved antifouling and antibacterial properties of forward osmosis membranes through surface modification with zwitterions and silver-based metal organic frameworks. <i>Journal of Membrane Science</i> , 2020 , 611, 118352	9.6	41
5	į	In Situ Ag-MOF Growth on Pre-Grafted Zwitterions Imparts Outstanding Antifouling Properties to Forward Osmosis Membranes. <i>ACS Applied Materials & Acs Applied Materials & Acs</i>	9.5	32
4	ļ	Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: Characterization and application in wastewater treatment. <i>Journal of Water Process Engineering</i> , 2019 , 32, 100942	6.7	21
3		Effective strategy for UV-mediated grafting of biocidal Ag-MOFs on polymeric membranes aimed at enhanced water ultrafiltration. <i>Chemical Engineering Journal</i> , 2021 , 426, 130704	14.7	13
2		Prediction of shear strength parameters of hydrocarbon contaminated sand based on machine learning methods. <i>Georisk</i> ,1-19	1.9	3
1		Functionalized Polyamide Membranes Yield Suppression of Biofilm and Planktonic Bacteria while Retaining Flux and Selectivity. <i>Separation and Purification Technology</i> , 2021 , 282, 119981	8.3	1