
Ganqing Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5567294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3197-3202.	3.3	507
2	Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China. Gondwana Research, 2011, 19, 831-849.	3.0	466
3	Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 2012, 489, 546-549.	13.7	420
4	Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426, 822-826.	13.7	349
5	Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth and Planetary Science Letters, 2007, 261, 303-320.	1.8	341

6 Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

7	Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 2016, 14, 457-468.	1.1	241
8	Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochimica Et Cosmochimica Acta, 2015, 156, 173-193.	1.6	222
9	The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20, 289-294.	0.9	220
10	U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33, 473.	2.0	215
11	Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China. Journal of Sedimentary Research, 2006, 76, 978-995.	0.8	187

The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{12}{187}$

13	Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 2017, 463, 159-170.	1.8	172
14	Time-calibrated Milankovitch cycles for the late Permian. Nature Communications, 2013, 4, 2452.	5.8	135
15	Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research, 2006, 147, 156-185.	1.2	127
16	Astrochronology of the Early Turonian–Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 55-70.	1.0	126
17	Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian–Lower Danian in Songliao Basin, northeastern China. Earth and Planetary Science Letters, 2014, 407, 82-95.	1.8	119
18	The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 2009, 278, 308-323.	1.8	116

#	Article	IF	CITATIONS
19	lcehouse–greenhouse variations in marine denitrification. Biogeosciences, 2014, 11, 1273-1295.	1.3	112
20	New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications. Precambrian Research, 2015, 259, 130-142.	1.2	112
21	New U–Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran–Cambrian transition. Journal of Asian Earth Sciences, 2012, 48, 1-8.	1.0	104
22	Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China. Earth and Planetary Science Letters, 2018, 483, 52-63.	1.8	103
23	Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13190-13195.	3.3	100
24	Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13 C anomaly in the Yangtze Gorges area, South China. Precambrian Research, 2015, 271, 243-253.	1.2	97
25	Paleomagnetism of the late Cryogenian Nantuo Formation and paleogeographic implications for the South China Block. Journal of Asian Earth Sciences, 2013, 72, 164-177.	1.0	96
26	Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 2008, 36, 347.	2.0	94
27	Sequence Stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. Journal of Sedimentary Research, 2002, 72, 524-542.	0.8	93
28	Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research, 2012, 192-195, 125-141.	1.2	93
29	Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 2016, 276, 145-157.	1.2	91
30	Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction. Geology, 2017, 45, 343-346.	2.0	90
31	The onset of widespread marine red beds and the evolution of ferruginous oceans. Nature Communications, 2017, 8, 399.	5.8	86
32	Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research, 2012, 22, 748-759.	3.0	83
33	Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology, 2003, 50, 921-952.	1.6	82
34	Paired carbonate and organic carbon isotope variations of the Ediacaran Doushantuo Formation from an upper slope section at Siduping, South China. Precambrian Research, 2016, 273, 53-66.	1.2	79
35	Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian–Ediacaran transition. Earth and Planetary Science Letters, 2010, 299, 159-168.	1.8	78
36	A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth and Planetary Science Letters, 2019, 527, 115797.	1.8	73

#	Article	lF	CITATIONS
37	Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the <i>c</i> . 635 Ma Doushantuo cap carbonate. Journal of the Geological Society, 2011, 168, 805-816.	0.9	64
38	Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334, 218-227.	1.0	62
39	Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow) Tj ETQq1 1 0.784 26-39.	314 rgBT / 1.4	Overlock 10 60
40	Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochimica Et Cosmochimica Acta, 2017, 216, 201-220.	1.6	57
41	The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic sea. Sedimentary Geology, 2018, 368, 83-104.	1.0	55
42	Multiple negative molybdenum isotope excursions in the Doushantuo Formation (South China) fingerprint complex redox-related processes in the Ediacaran Nanhua Basin. Geochimica Et Cosmochimica Acta, 2019, 261, 191-209.	1.6	52
43	Nitrogen isotope constraints on the early Ediacaran ocean redox structure. Geochimica Et Cosmochimica Acta, 2018, 240, 220-235.	1.6	51
44	New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: Implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian) glaciation in South China. Science in China Series D: Earth Sciences, 2008, 51, 1537-1544.	0.9	50
45	Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Science Bulletin, 2006, 51, 1152-1173.	1.7	49
46	Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes. Geology, 2014, 42, 815-818.	2.0	49
47	Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: Implications for Cenozoic tectonic history. Earth and Planetary Science Letters, 2015, 417, 142-150.	1.8	48
48	Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform. Science China Earth Sciences, 2014, 57, 919-929.	2.3	44
49	Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 2017, 102, 2317-2332.	0.9	43
50	New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China. Geoscience Frontiers, 2017, 8, 1161-1173.	4.3	39
51	The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296, 138-150.	1.0	38
52	Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: An example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 2017, 294, 214-229.	1.2	37
53	Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Research, 2018, 58, 1-15.	3.0	37
54	Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Science in China Series D: Earth Sciences, 2008, 51, 1560-1569.	0.9	36

#	Article	IF	CITATIONS
55	lodine content of the carbonates from the Doushantuo Formation and shallow ocean redox change on the Ediacaran Yangtze Platform, South China. Precambrian Research, 2019, 322, 160-169.	1.2	36
56	New biostratigraphic data from the Cretaceous Bolinxiala Formation in Zanda, southwestern Tibet of China, and their paleogeographic and paleoceanographic implications. Cretaceous Research, 2009, 30, 1005-1018.	0.6	30
57	Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Research, 2015, 28, 432-450.	3.0	30
58	Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and Their Potential for Hydrocarbon Generation. Journal of China University of Geosciences, 2008, 19, 549-566.	0.4	29
59	Astrochronology for the Early Cretaceous Jehol Biota in northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 221-228.	1.0	29
60	Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences, 2013, 102, 401-413.	0.9	27
61	Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 2014, 248, 1-16.	1.2	27
62	Thallium isotope ratios in shales from South China and northwestern Canada suggest widespread O2 accumulation in marine bottom waters was an uncommon occurrence during the Ediacaran Period. Chemical Geology, 2020, 557, 119856.	1.4	25
63	MICROFABRICS IN MESOPROTEROZOIC MICRODIGITATE STROMATOLITES: EVIDENCE OF BIOGENICITY AND ORGANOMINERALIZATION AT MICRON AND NANOMETER SCALES. Palaios, 2013, 28, 178-194.	0.6	23
64	New biostratigraphic and chemostratigraphic data from the Ediacaran Doushantuo Formation in intra-shelf and upper slope facies of the Yangtze platform: Implications for biozonation of acanthomorphic acritarchs in South China. Precambrian Research, 2017, 300, 28-39.	1.2	23
65	Subglacial meltwater supported aerobic marine habitats during Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25478-25483.	3.3	23
66	Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock. Science in China Series D: Earth Sciences, 2008, 51, 1330-1339.	0.9	22
67	The age of the Chuangde Formation in Kangmar, southern Tibet of China: Implications for the origin of Cretaceous oceanic red beds (CORBs) in the northern Tethyan Himalaya. Sedimentary Geology, 2011, 235, 111-121.	1.0	22
68	Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences, 2015, 107, 195-211.	1.0	22
69	Significance of Middle Cambrian mixed carbonate-siliciclastic units for global correlation: southern Nevada, USA. Palaeoworld, 2006, 15, 360-366.	0.5	19
70	Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications. Precambrian Research, 2013, 225, 77-85.	1.2	18
71	Stromatolites in the Late Ordovician Eureka Quartzite: implications for microbial growth and preservation in siliciclastic settings. Sedimentology, 2009, 56, 1275-1291.	1.6	17
72	Paired carbonate-organic carbon and nitrogen isotope variations in Lower Mississippian strata of the southern Great Basin, western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 462-472.	1.0	15

#	Article	IF	CITATIONS
73	Sulfur isotope change across the Early Mississippian K–O (Kinderhookian–Osagean) δ13C excursion. Earth and Planetary Science Letters, 2018, 494, 202-215.	1.8	13
74	Sand veins and MISS from the Mesoproterozoic black shale (ca. 1.7 Ga) in North China: Implication for methane degassing from microbial mats. Science in China Series D: Earth Sciences, 2008, 51, 1525-1536.	0.9	12
75	Sunspot cycles recorded in siliciclastic biolaminites at the dawn of the Neoproterozoic Sturtian glaciation in South China. Precambrian Research, 2018, 315, 75-91.	1.2	12
76	Transient shallow-ocean oxidation associated with the late Ediacaran Nama skeletal fauna: Evidence from iodine contents of the Lower Nama Group, southern Namibia. Precambrian Research, 2020, 343, 105732.	1.2	12
77	Astrochronologic calibration of the Shuram carbon isotope excursion with new data from South China. Global and Planetary Change, 2022, 209, 103749.	1.6	12
78	A transient peak in marine sulfate after the 635-Ma snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117341119.	3.3	12
79	Global cooling initiated the Middle-Late Mississippian biodiversity crisis. Global and Planetary Change, 2022, 215, 103852.	1.6	11
80	Chemostratigraphic correlations across the first major trilobite extinction and faunal turnovers between Laurentia and South China. Scientific Reports, 2019, 9, 17392.	1.6	9
81	Chromium isotope evidence for oxygenation events in the Ediacaran ocean. Geochimica Et Cosmochimica Acta, 2022, 323, 258-275.	1.6	8
82	Iodine records from the Ediacaran Doushantuo cap carbonates of the Yangtze Block, South China. Precambrian Research, 2020, 347, 105843.	1.2	7
83	Systematic paleontology, acritarch biostratigraphy, and δ ¹³ C chemostratigraphy of the early Ediacaran Krol A Formation, Lesser Himalaya, northern India. Journal of Paleontology, 0, , 1-62.	0.5	7
84	Carbonate concretions from the Gaoyuzhuang Formation (ca. 1.6 Ga) of the North China platform: Implication for a methane-rich Mesoproterozoic ocean. Journal of Earth Science (Wuhan, China), 2010, 21, 11-12.	1.1	1
85	Morphological Association of Microbially Induced Sedimentary Structures (MISS) as a Paleoenvironmental Indicator: An Example from the Proterozoic Succession of the Southern North China Platform. , 2012, , 163-175.		1