Baek Woon-kyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5567049/publications.pdf

Version: 2024-02-01

105 papers 10,910 citations

45 h-index 30058 103 g-index

108 all docs

108 docs citations

108 times ranked 15629 citing authors

#	Article	IF	CITATIONS
1	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
2	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
3	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
4	Formation of Ni–Co–MoS ₂ Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 9006-9011.	11,1	511
5	Structure-designed synthesis of FeS ₂ @C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1576-1580.	15.6	475
6	Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy and Environmental Science, 2016, 9, 2314-2318.	15.6	414
7	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	5 . 8	392
8	Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Advanced Materials, 2018, 30, e1705146.	11.1	376
9	Hierarchical MoS ₂ tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Science Advances, 2016, 2, e1600021.	4.7	362
10	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	4.7	336
11	Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3920-3925.	3.3	319
12	Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy and Environmental Science, 2019, 12, 2443-2454.	15.6	315
13	Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52, 1633-1636.	2.2	271
14	Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33766-33774.	4.0	257
15	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	7.8	248
16	Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy and Environmental Science, 2015, 8, 1707-1711.	15.6	215
17	Boosting Electrochemical Water Oxidation with Metal Hydroxide Carbonate Templated Prussian Blue Analogues. Angewandte Chemie - International Edition, 2018, 57, 1241-1245.	7.2	180
18	TiO ₂ as an active or supplemental material for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 14-31.	5.2	166

#	Article	IF	CITATIONS
19	Etchingâ€inâ€aâ€Box: A Novel Strategy to Synthesize Unique Yolkâ€5helled Fe ₃ O ₄ @Carbon with an Ultralong Cycling Life for Lithium Storage. Advanced Energy Materials, 2016, 6, 1502318.	10.2	158
20	Porosityâ€Controlled TiNb ₂ O ₇ Microspheres with Partial Nitridation as A Practical Negative Electrode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401945.	10.2	153
21	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	7.8	148
22	Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics. Advanced Materials, 2017, 29, 1604989.	11.1	141
23	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.	3.3	139
24	Formation of Co ₃ O ₄ microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chemical Communications, 2016, 52, 6269-6272.	2.2	137
25	Amorphous Nickel–Iron Borophosphate for a Robust and Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100624.	10.2	120
26	Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes. Advanced Materials, 2020, 32, e1905573.	11.1	105
27	A Ge inverse opal with porous walls as an anode for lithium ion batteries. Energy and Environmental Science, 2012, 5, 9028.	15.6	104
28	N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction. Scientific Reports, 2016, 6, 34004.	1.6	104
29	Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20092-20099.	4.0	102
30	Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation. Advanced Energy Materials, 2013, 3, 176-182.	10.2	101
31	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	5.9	97
32	Sb-based electrode materials for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 8159-8193.	5.2	95
33	Porous TiNb ₂ O ₇ nanofibers decorated with conductive Ti _{1â^'x} Nb _x N bumps as a high power anode material for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8590-8596.	5.2	90
34	Polyaniline/Polyoxometalate Hybrid Nanofibers as Cathode for Lithium Ion Batteries with Improved Lithium Storage Capacity. Journal of Physical Chemistry C, 2013, 117, 17376-17381.	1.5	86
35	Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries. NPG Asia Materials, 2017, 9, e375-e375.	3.8	85
36	Electrochemical Properties of Siâ€Ge Heterostructures as an Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 1458-1464.	7.8	78

#	Article	IF	CITATIONS
37	Facile <i>ex situ</i> formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. Journal of Materials Chemistry A, 2020, 8, 17229-17237.	5.2	63
38	Synthesis of hierarchical porous TiNb ₂ O ₇ nanotubes with controllable porosity and their application in high power Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 6958-6965.	5.2	62
39	One-Dimensional Silicon Nanostructures for Li Ion Batteries. Journal of Physical Chemistry Letters, 2014, 5, 720-731.	2.1	61
40	Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Applied Physics Letters, 2012, 100 , .	1.5	60
41	MXene Analogue: A 2D Nitridene Solid Solution for Highâ€Rate Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
42	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	7.8	53
43	LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery. Journal of Power Sources, 2018, 377, 87-92.	4.0	50
44	Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 18306-18313.	5.2	47
45	Current Status of Selfâ€Supported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem, 2019, 11, 5898-5912.	1.8	47
46	Electrospun Sn-doped LiTi ₂ (PO ₄) ₃ /C nanofibers for ultra-fast charging and discharging. Journal of Materials Chemistry A, 2015, 3, 10395-10402.	5.2	43
47	Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Scientific Reports, 2015, 5, 8946.	1.6	42
48	Partially reduced SnO 2 nanoparticles anchored on carbon nanofibers for high performance sodium-ion batteries. Electrochemistry Communications, 2016, 72, 91-95.	2.3	42
49	Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na ⁺ ion uptake. Science Advances, 2017, 3, e1700509.	4.7	42
50	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	7.8	41
51	WO ₃ /W:BiVO ₄ /BiVO ₄ graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4648-4655.	1.3	38
52	Epitaxial Growth of Nanostructured Li ₂ Se on Lithium Metal for All Solidâ€State Batteries. Advanced Science, 2021, 8, e2004204.	5.6	36
53	Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 11203-11206.	5.2	35
54	In Situ Cross-linked Carboxymethyl Cellulose-Polyethylene Glycol Binder for Improving the Long-Term Cycle Life of Silicon Anodes in Li Ion Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 8123-8130.	1.8	35

#	Article	IF	Citations
55	Three-dimensional Gd-doped TiO ₂ fibrous photoelectrodes for efficient visible light-driven photocatalytic performance. RSC Advances, 2014, 4, 11750-11757.	1.7	31
56	Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure. Materials, 2013, 6, 3387-3403.	1.3	27
57	Size-dependent interactions of silica nanoparticles with a flat silica surface. Journal of Colloid and Interface Science, 2016, 483, 177-184.	5.0	25
58	Boosting Electrochemical Water Oxidation with Metal Hydroxide Carbonate Templated Prussian Blue Analogues. Angewandte Chemie, 2018, 130, 1255-1259.	1.6	25
59	Toward High Rate Performance Solidâ€State Batteries. Advanced Energy Materials, 2022, 12, .	10.2	24
60	Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries. Macromolecular Research, 2015, 23, 719-725.	1.0	23
61	Partial Dehydration in Hydrated Tungsten Oxide Nanoplates Leads to Excellent and Robust Bifunctional Oxygen Reduction and Hydrogen Evolution Reactions in Acidic Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 9507-9518.	3.2	23
62	Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes. Journal of Power Sources, 2021, 506, 230158.	4.0	21
63	Nanohybridization of Low-Dimensional Nanomaterials: Synthesis, Classification, and Application. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 1-56.	6.8	20
64	Electrospun porous lithium manganese phosphate–carbon nanofibers as a cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17713-17720.	5.2	20
65	Ce ³⁺ -enriched core–shell ceria nanoparticles for silicate adsorption. Journal of Materials Research, 2017, 32, 2829-2836.	1.2	20
66	Lithiophilic surface treatment of metal- and metallic compound-based frameworks by gas nitriding for lithium metal batteries. Journal of Power Sources, 2020, 477, 228776.	4.0	20
67	Ionâ€Conducting Channel Implanted Anode Matrix for Allâ€Solidâ€State Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface. Advanced Energy Materials, 2021, 11, 2102045.	10.2	19
68	Surfaceâ€Coverageâ€Dependent Cycle Stability of Coreâ€Shell Nanostructured Electrodes for Use in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300472.	10.2	18
69	Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. lonics, 2014, 20, 1351-1359.	1,2	18
70	Tailoring the Ratio of A-Site Cations in Pr _{1â€"<i>x</i>>0.4} O _{5+δ} to Promote the Higher Oxygen Reduction Reaction Activity for Low-Temperature Solid Oxide Fuel Cells. Chemistry of Materials, 2020, 32, 3841-3849.	3.2	17
71	Microstructure Evolution and Interface Stability of Thermal Barrier Coatings with Vertical Type Cracks in Cyclic Thermal Exposure. Journal of Thermal Spray Technology, 2013, 22, 671-679.	1.6	15
72	Stackable, three dimensional carbon–metal oxide composite for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20459-20464.	5.2	15

#	Article	IF	CITATIONS
73	Facile Growth of Metal-Rich Cu _{1.75} S and Cu _{1.8} S Microspheres Assembled with Mesoporous Nanosheets and Their Application in Na-Ion Batteries. Crystal Growth and Design, 2020, 20, 3325-3333.	1.4	15
74	Enhanced Electrochemical Properties of LiFePO ₄ Electrodes with Carboxylated Poly(vinyl) Tj ETQq0 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	0 rgBT /0 1.5	Overlock 10 ⁻¹
75	Si nanotubes array sheathed with SiN/SiOxNy layer as an anode material for lithium ion batteries. Journal of Electroceramics, 2014, 32, 66-71.	0.8	13
76	Effects of metallic contaminant type and concentration on photovoltaic performance degradation of p-type silicon solar cells. Journal of the Korean Physical Society, 2013, 63, 47-52.	0.3	12
77	LEGO-like assembly of peelable, deformable components for integrated devices. NPG Asia Materials, 2013, 5, e66-e66.	3.8	12
78	Cross Effect of Surface Area and Electrical Conductivity for Carbonaceous Materials in Flow-electrode Capacitive Mixing (F-CapMix) and Flow-electrode Capacitive Deionization (FCDI): Solid-like Behavior of Flow-electrode. ACS Sustainable Chemistry and Engineering, 2021, 9, 13514-13525.	3.2	12
79	An integrated strategy based on Schiff base reactions to construct unique two-dimensional nanostructures for intrinsic pseudocapacitive sodium/lithium storage. Chemical Engineering Journal, 2022, 429, 132339.	6.6	12
80	Crack-Growth Behavior in Thermal Barrier Coatings with Cyclic Thermal Exposure. Coatings, 2019, 9, 365.	1.2	11
81	Enhanced Electrochemical Performance and Durability of the BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â~Î} Composite Cathode of Protonic Ceramic Fuel Cells via Forming Nickel Oxide Nanoparticles. ACS Applied Energy Materials. 2021. 4. 11564-11573.	2.5	11
82	A robust solid electrolyte interphase layer coated on polyethylene separator surface induced by Ge interlayer for stable Li-metal batteries. Electrochimica Acta, 2021, 370, 137703.	2.6	10
83	Unprecedentedly Low CO ₂ Transport through Vertically Aligned, Conical Silicon Nanotube Membranes. Nano Letters, 2020, 20, 4754-4760.	4.5	9
84	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	5.2	8
85	Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy. Applied Surface Science, 2022, 572, 151439.	3.1	8
86	Crack-Resistance Behavior of an Encapsulated, Healing Agent Embedded Buffer Layer on Self-Healing Thermal Barrier Coatings. Coatings, 2019, 9, 358.	1.2	7
87	High-Performance Asymmetric Flow-Electrode Capacitive Mixing with MnO ₂ -Coated Activated Carbon Flow-Electrode for Energy Harvesting from Salinity Gradient Power., 2022, 4, 618-625.		7
88	MXene Analogue: A 2D Nitridene Solid Solution for Highâ€Rate Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	7
89	Multilayered Graphene-Coated Metal Current Collectors with High Electrical Conductivity and Corrosion Resistivity for Flow-Electrode Capacitive Mixing. ACS Sustainable Chemistry and Engineering, 2022, 10, 7625-7634.	3.2	7
90	Design of inorganic/organic bi-layered Li protection layer enabled dendrite-free practical Li metal battery. Chemical Engineering Journal, 2022, 450, 137993.	6.6	7

#	Article	IF	CITATIONS
91	Effect of Ta ⁵⁺ doping on the thermal physical properties of defective fluorite Y ₃ NbO ₇ ceramics. Journal of the American Ceramic Society, 2022, 105, 1358-1366.	1.9	6
92	MICROSTRUCTURAL EVOLUTION AND RESIDUAL STRESSES OF AIR-PLASMA SPRAYED THERMAL BARRIER COATINGS UNDER THERMAL EXPOSURE. Surface Review and Letters, 2010, 17, 337-343.	0.5	5
93	Stretchable Electronics: Inâ€Plane Deformation Mechanics for Highly Stretchable Electronics (Adv.) Tj ETQq1 1 0	.784314 r	gBŢ /Overlo
94	Dielectric Polarization of a High-Energy Density Graphite Anode and Its Physicochemical Effect on Li-Ion Batteries. Industrial & Engineering Chemistry Research, 2017, 56, 13776-13782.	1.8	5
95	Strategy to utilize amorphous phase of semiconductor toward excellent and reliable photochemical water splitting performance: Roles of interface dipole moment and reaction parallelization. International Journal of Energy Research, 2022, 46, 3674-3685.	2.2	5
96	Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP. Scientific Reports, 2021, 11, 21214.	1.6	5
97	Freestanding rGO-SWNT-STN Composite Film as an Anode for Li Ion Batteries with High Energy and Power Densities. Nanomaterials, 2015, 5, 2380-2390.	1.9	4
98	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	q0,0,0 rgE	BT <u>/</u> Overlock
99	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	7.8	3
100	High Rate Capability of a LiNi _{0.84} Co _{0.12} Mn _{0.04} O ₂ Cathode with a Uniform Conducting Network of Functionalized Graphene Nanoribbons for Li-lon Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 12889-12895.	1.8	3
101	Synthesis of Alkali Transition Metal Oxides Derived from Prussian Blue Analogues Toward Low Cationic Disorder for Li-Ion Battery Cathodes. Crystal Growth and Design, 2020, 20, 4749-4757.	1.4	3
102	Rational design of Au dotted Co ₃ O ₄ nanosheets as an efficient bifunctional catalyst for Li–oxygen batteries. RSC Advances, 2017, 7, 51652-51657.	1.7	2
103	Innenrücktitelbild: Boosting Electrochemical Water Oxidation with Metal Hydroxide Carbonate Templated Prussian Blue Analogues (Angew. Chem. 5/2018). Angewandte Chemie, 2018, 130, 1433-1433.	1.6	1
104	Fabrication and Characteristics of Zirconia-Alumina Composites with Bilayer Structure. Materials Research Society Symposia Proceedings, 2004, 821, 128.	0.1	0
105	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	7.8	0