Yahong Jin

List of Publications by Citations

Source: https://exaly.com/author-pdf/5567030/yahong-jin-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71 1,944 5.1 4.82 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
68	A deep red phosphor Li2MgTiO4:Mn4+ exhibiting abnormal emission: Potential application as color converter for warm w-LEDs. <i>Chemical Engineering Journal</i> , 2016 , 288, 596-607	14.7	196
67	Multifunctional near-infrared emitting Cr3+-doped Mg4Ga8Ge2O20 particles with long persistent and photostimulated persistent luminescence, and photochromic properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6614-6625	7.1	85
66	A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: High-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting. <i>Chemical Engineering Journal</i> , 2019 , 374, 992-10	14.7 004	84
65	Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+,Ho3+ and photostimulable luminescence for optical information storage. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6058-6067	7.1	66
64	Luminescence Properties of Dual-Emission (UV/Visible) Long Afterglow Phosphor SrZrO3: Pr3+. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 3821-3827	3.8	63
63	Luminescent properties of Tb3+-doped Ca2SnO4 phosphor. <i>Journal of Luminescence</i> , 2013 , 138, 83-88	3.8	48
62	Luminescent properties of a red afterglow phosphor Ca2SnO4:Pr3+. <i>Optical Materials</i> , 2013 , 35, 1378-1	3 84	47
61	Reversible colorless-cyan photochromism in Eu2+-doped Sr3YNa(PO4)3F powders. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9435-9443	7.1	43
60	The long persistent luminescence properties of phosphors: Li2ZnGeO4 and Li2ZnGeO4:Mn2+. <i>RSC Advances</i> , 2014 , 4, 11360-11366	3.7	39
59	A high color purity deep red emitting phosphor SrGe4O9:Mn4+ for warm white LEDs. <i>Powder Technology</i> , 2016 , 292, 74-79	5.2	37
58	A novel emitting color tunable phosphor Ba3Gd(PO4)3: Ce3+, Tb3+ based on energy transfer. <i>Physica B: Condensed Matter</i> , 2014 , 436, 105-110	2.8	33
57	Design and control of the coloration degree for photochromic Sr3GdNa(PO4)3F:Eu2+ via traps modulation by Ln3+ (Ln = Y, La-Sm, Tb-Lu) co-doping. <i>Sensors and Actuators B: Chemical</i> , 2017 , 245, 256-	2 <mark>8</mark> 5	32
56	Preparation, Design, and Characterization of the Novel Long Persistent Phosphors: Na2ZnGeO4 and Na2ZnGeO4:Mn2+. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1555-1561	3.8	32
55	A single-phase full-color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ with near-zero thermal quenching and high quantum yield for near-UV converted warm w-LEDs. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 5627-5639	3.8	32
54	Optically Stimulated Luminescence Phosphors: Principles, Applications, and Prospects. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000123	8.3	32
53	Tailoring Multidimensional Traps for Rewritable Multilevel Optical Data Storage. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS Ap</i>	9.5	30
52	Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor. <i>Journal of Alloys and Compounds</i> , 2014 , 616, 159-165	5.7	30

51	Aliovalent Doping and Surface Grafting Enable Efficient and Stable Lead-Free Blue-Emitting Perovskite Derivative. <i>Advanced Optical Materials</i> , 2020 , 8, 2000779	8.1	30	
50	A novel orange emitting long afterglow phosphor Ca3Si2O7:Eu2+ and the enhancement by R3+ ions (R=Tm, Dy and Er). <i>Materials Letters</i> , 2014 , 126, 75-77	3.3	28	
49	Tunable bluegreen color emission and energy transfer properties of Li2CaGeO4:Ce3+, Tb3+ phosphors for near-UV white-light LEDs. <i>Journal of Alloys and Compounds</i> , 2014 , 610, 695-700	5.7	27	
48	Cr3+-doped Mg4Ga4Ge3O16 near-infrared phosphor membrane for optical information storage and recording. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 991-1000	5.7	27	
47	Crystal field modulation-control, bandgap engineering and shallow/deep traps tailoring-guided design of a color-tunable long-persistent phosphor (Ca, Sr)GaO:Mn,Bi . <i>Dalton Transactions</i> , 2018 , 48, 253-265	4.3	26	
46	Ni2+-Doped Yttrium Aluminum Gallium Garnet Phosphors: Bandgap Engineering for Broad-Band Wavelength-Tunable Shortwave-Infrared Long-Persistent Luminescence and Photochromism. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6543-6550	8.3	26	
45	Reversible white and light gray photochromism in europium doped Zn2GeO4. <i>Materials Letters</i> , 2014 , 134, 187-189	3.3	25	
44	Tunable blue-green color emitting phosphors Sr3YNa(PO4)3F:Eu2+, Tb3+ based on energy transfer for near-UV white LEDs. <i>Journal of Luminescence</i> , 2017 , 185, 106-111	3.8	23	
43	Synthesis and Persistent Luminescence Mechanism of a Novel Orange Emitting Persistent Phosphor Sr5(BO3)3Cl:Eu2+. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 2573-2579	3.8	22	
42	Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35:Mn4+, Ln3+ (Ln=Nd, Yb, Er). <i>Dyes and Pigments</i> , 2019 , 161, 137-146	4.6	22	
41	Luminescent properties of a novel afterglow phosphor Sr3Al2O5Cl2:Eu2+, Ce3+. <i>Ceramics International</i> , 2014 , 40, 8229-8236	5.1	19	
40	A bifunctional phosphor Sr3Sn2O7:Eu3+: Red luminescence and photochromism properties. <i>Journal of Luminescence</i> , 2017 , 192, 337-342	3.8	19	
39	Tunable whole visible region color emission, enhancing emission intensity and persistent performance of a self-activated phosphor:Na2CaSn2Ge3O12. <i>Ceramics International</i> , 2018 , 44, 18809-18	8 § 16	18	
38	Synthesis and luminescence properties of a novel yellowish-pink emissive long persistent luminescence phosphor Cd 2 GeO 4:Pr 3+. <i>Journal of Alloys and Compounds</i> , 2015 , 623, 255-260	5.7	17	
37	Reversible luminescence switching and non-destructive optical readout behaviors of Sr3SnMO7: Eu3+ (M = Sn, Si, Ge, Ti, Zr, and Hf) driven by photochromism and tuned by partial cation substitution. Sensors and Actuators B: Chemical, 2018, 262, 289-297	8.5	17	
36	An All-Optical Ratiometric Thermometer Based on Reverse Thermal Response from Interplay among Diverse Emission Centers and Traps with High-Temperature Sensitivity. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 21242-21251	3.9	16	
35	Ratiometric optical thermometer based on thermally coupled levels and non-thermally coupled levels. <i>Journal of Alloys and Compounds</i> , 2021 , 894, 162494	5.7	14	
34	Li Zn Ga Ge O : Cr , Ti : A Long Persistent Phosphor Excited in a Wide Spectral Region from UV to Red Light for Reproducible Imaging through Biological Tissue. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1506-1514	4.5	13	

33	Luminescence properties of a novel orange emission long persistent phosphor CaO:Sm3+. <i>Optics Communications</i> , 2013 , 311, 266-269	2	13
32	Ni-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application <i>ACS Applied Materials & Diodes & Diode</i>	9.5	13
31	Effects of Ln3+ (Ln=Ce, Pr, Tb and Lu) doping on the persistent luminescence properties BaMg2(PO4)2:Eu2+ phosphor. <i>Ceramics International</i> , 2015 , 41, 14998-15004	5.1	12
30	Reversible photoluminescence switching in photochromic material Sr6Ca4(PO4)6F2:Eu2+ and the modified performance by trap engineering via Ln3+ (Ln = La, Y, Gd, Lu) co-doping for erasable optical data storage. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6403-6412	7.1	11
29	Preparation and characterization of a long persistent phosphor Na_2Ca_3Si_2O_8:Ce^3+. <i>Optical Materials Express</i> , 2015 , 5, 1488	2.6	10
28	Investigation of reversible photoluminescence switching driven by colorless-purple photochromism in Sr5(PO4)3F:Eu2+ for optical storage applications. <i>Journal of Alloys and Compounds</i> , 2018 , 753, 607-61	4 5.7	10
27	Long persistent phosphor SrZrO3:Yb3+ with dual emission in NUV and NIR region: A combined experimental and first-principles methods. <i>Journal of Alloys and Compounds</i> , 2018 , 766, 663-671	5.7	10
26	Tunable emission and efficient energy-transfer properties of Ce3+ and Mn2+ co-doped Ba3Gd(PO4)3 phosphors. <i>Applied Physics A: Materials Science and Processing</i> , 2014 , 117, 823-829	2.6	10
25	Hybridization of silver orthophosphate with a melilite-type phosphor for enhanced energy-harvesting photocatalysis. <i>Catalysis Science and Technology</i> , 2017 , 7, 3736-3746	5.5	10
24	Photochromism of Sm3+-doped perovskite oxide: Ultrahigh-contrast optical switching and erasable optical recording. <i>Journal of Luminescence</i> , 2021 , 233, 117922	3.8	9
23	Reversible white-purple photochromism in europium doped Sr3GdLi(PO4)3F powders. <i>Journal of Luminescence</i> , 2017 , 186, 238-242	3.8	8
22	Sr3YLi(PO4)3F:Eu2+,Ln3+: colorless-magenta photochromism and coloration degree regulation through Ln3+ co-doping. <i>RSC Advances</i> , 2017 , 7, 43700-43707	3.7	8
21	A novel photochromic material based on halophosphate: Remote light-controlled reversible luminescence modulation and fluorescence lifetime regulation. <i>Ceramics International</i> , 2019 , 45, 5971-5	980	8
20	Sr3GdLi(PO4)3F:Eu2+, Mn2+: A tunable blue-white color emitting phosphor via energy transfer for near-UV white LEDs. <i>Ceramics International</i> , 2017 , 43, 8824-8830	5.1	7
19	Widening the emission spectrum of Eu2+ in Na3Sc2(PO4)3 to full-color via controlling the multi-emission centers by equivalent substitution of Sc Al and PO4-BO3. <i>Optical Materials</i> , 2019 , 88, 635	5 ³ 6³41	7
18	Persistent luminescence in the self-activated K2Zr(BO3)2. RSC Advances, 2017 , 7, 4190-4195	3.7	6
17	Tunable ultraviolet-B full-spectrum delayed luminescence of bismuth-activated phosphors for high-secure data encryption and decryption. <i>Journal of Alloys and Compounds</i> , 2022 , 902, 163776	5.7	6
16	Flux-assisted low-temperature synthesis of Mn4+-doped unusual broadband deep-red phosphors toward warm w-LEDs. <i>Journal of Alloys and Compounds</i> , 2021 , 870, 159394	5.7	6

LIST OF PUBLICATIONS

15	Reversible multiplexing optical information storage and photoluminescence switching in Eu2+-doped fluorophosphate-based tunable photochromic materials. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 5930-5944	7:1	6
14	Intrinsic defects and spectral characteristics of SrZrO 3 perovskite. <i>Physica B: Condensed Matter</i> , 2018 , 534, 105-112	2.8	5
13	The exploration and characterization of an orange emitting long persistent luminescence phosphor LiSr4(BO3)3:Eu2+. <i>Journal of Luminescence</i> , 2016 , 172, 53-60	3.8	5
12	Strontium substitution enhancing a novel Sm3+-doped barium gallate phosphor with bright and red long persistent luminescence. <i>Journal of Luminescence</i> , 2020 , 218, 116820	3.8	5
11	Persistent luminescence in BaGd2O4:Dy3+: from blue to infrared. <i>Applied Physics A: Materials Science and Processing</i> , 2018 , 124, 1	2.6	5
10	A Novel Orange Emitting Long Persistent Phosphor CdGeO3:Sm3+. <i>Science of Advanced Materials</i> , 2017 , 9, 386-391	2.3	3
9	Photoluminescence and long persistent luminescence properties of a novel green emitting phosphor Sr3TaAl3Si2O14:Tb3+. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	3
8	Multi-site occupation of Cr3+ toward developing broadband near-infrared phosphors. <i>Ceramics International</i> , 2021 , 47, 23558-23563	5.1	3
7	Novel yellow color-emitting BaY2O4:Dy3+ phosphors: persistent luminescence from blue to red. <i>Applied Physics A: Materials Science and Processing</i> , 2020 , 126, 1	2.6	2
6	Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites. <i>Journal of Materials Chemistry C</i> ,	7.1	2
5	Phosphor SrZrO3:Sm3+ with fluorescence modulation and photochromic characteristics for erasable optical storage. <i>Ceramics International</i> , 2021 ,	5.1	2
4	Luminescence of divalent europium activated spinels synthesized by combustion and the enhanced afterglow by dysprosium incorporation. <i>Physica B: Condensed Matter</i> , 2016 , 488, 8-12	2.8	1
3	A novel tunable color emitting phosphor Sr3YLi(PO4)3F:Eu2+, Mn2+ for near-UV white LEDs based on the energy transfer from Eu2+ to Mn2+. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 19139-19147	2.1	1
2	Regulating electron traps of Eu2+-doped Ba1.6Ca0.4SiO4 persistent and optically stimulated luminescence phosphor toward optical data storage. <i>Journal of Luminescence</i> , 2022 , 241, 118518	3.8	1
1	A high efficient and anti-thermal dual-emission blue-green phosphors for warm white LEDs. <i>Applied Physics A: Materials Science and Processing</i> , 2020 , 126, 1	2.6	1