
David Otaegui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566467/publications.pdf Version: 2024-02-01

ΟΛΛΙΟ ΟΤΛΕΟΙΙ

#	Article	IF	CITATIONS
1	CircRNAs and cancer: Biomarkers and master regulators. Seminars in Cancer Biology, 2019, 58, 90-99.	4.3	291
2	Differential Micro RNA Expression in PBMC from Multiple Sclerosis Patients. PLoS ONE, 2009, 4, e6309.	1.1	222
3	LGMD2A: genotype–phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain, 2005, 128, 732-742.	3.7	197
4	Mitochondrial DNA depletion anddGKgene mutations. Annals of Neurology, 2002, 52, 311-317.	2.8	152
5	Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Human Molecular Genetics, 2017, 26, 3564-3572.	1.4	112
6	X-Linked Dominant Scapuloperoneal Myopathy Is Due to a Mutation in the Gene Encoding Four-and-a-Half-LIM Protein 1. American Journal of Human Genetics, 2008, 82, 208-213.	2.6	108
7	Methods for extracellular vesicles isolation in a hospital setting. Frontiers in Immunology, 2015, 6, 50.	2.2	93
8	Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us?. Frontiers in Cellular Neuroscience, 2014, 8, 100.	1.8	91
9	Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychological Medicine, 2010, 40, 487-495.	2.7	88
10	The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Seminars in Cancer Biology, 2019, 58, 100-108.	4.3	85
11	Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomarkers in Medicine, 2014, 8, 653-661.	0.6	84
12	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	2.2	79
13	The circulating transcriptome as a source of nonâ€invasive cancer biomarkers: concepts and controversies of nonâ€coding and coding <scp>RNA</scp> in body fluids. Journal of Cellular and Molecular Medicine, 2015, 19, 2307-2323.	1.6	78
14	Liquid Biopsy in Glioblastoma: Opportunities, Applications and Challenges. Cancers, 2019, 11, 950.	1.7	73
15	Extracellular Vesicles in Blood: Sources, Effects, and Applications. International Journal of Molecular Sciences, 2021, 22, 8163.	1.8	68
16	Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials, 2016, 98, 143-151.	5.7	65
17	Mutations in Progranulin Gene: Clinical, Pathological, and Ribonucleic Acid Expression Findings. Biological Psychiatry, 2008, 63, 946-952.	0.7	62
18	HLA-DRB1*15:01 and multiple sclerosis: a female association?. Multiple Sclerosis Journal, 2012, 18, 569-577.	1.4	59

#	Article	IF	CITATIONS
19	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	1.5	59
20	MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently Than Liposomes and Polymeric Nanoparticles. Pharmaceutics, 2020, 12, 186.	2.0	59
21	Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 983-990.	1.4	54
22	Penetrance in Parkinson's disease related to the <i>LRRK2</i> R1441G mutation in the Basque country (Spain). Movement Disorders, 2010, 25, 2340-2345.	2.2	52
23	Blood miRNA expression pattern is a possible risk marker for natalizumab-associated progressive multifocal leukoencephalopathy in multiple sclerosis patients. Multiple Sclerosis Journal, 2014, 20, 1851-1859.	1.4	50
24	Cancer risk in DM1 is sex-related and linked to miRNA-200/141 downregulation. Neurology, 2016, 87, 1250-1257.	1.5	48
25	Relevance of oxidative stress and inflammation in frailty based on human studies and mouse models. Aging, 2020, 12, 9982-9999.	1.4	48
26	Inflammaging markers characteristic of advanced age show similar levels with frailty and dependency. Scientific Reports, 2021, 11, 4358.	1.6	47
27	ERK2 protein regulates the proliferation of human mesenchymal stem cells without affecting their mobilization and differentiation potential. Experimental Cell Research, 2008, 314, 1777-1788.	1.2	46
28	Transcriptomic Profile Reveals Gender-Specific Molecular Mechanisms Driving Multiple Sclerosis Progression. PLoS ONE, 2014, 9, e90482.	1.1	46
29	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	2.2	44
30	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> as genetic mechanism predisposing to multiple sclerosis. Human Molecular Genetics, 2015, 24, 5619-5627.	1.4	43
31	The genetics of multiple sclerosis: review of current and emerging candidates. The Application of Clinical Genetics, 2013, 6, 63.	1.4	41
32	CD24 V/V is an allele associated with the risk of developing multiple sclerosis in the Spanish population. Multiple Sclerosis Journal, 2006, 12, 511-514.	1.4	40
33	Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage. Stem Cell Reports, 2014, 3, 774-788.	2.3	39
34	The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation?. Nutrients, 2020, 12, 1654.	1.7	39
35	SncRNA (microRNA & snoRNA) opposite expression pattern found in multiple sclerosis relapse and remission is sex dependent. Scientific Reports, 2016, 6, 20126.	1.6	38
36	Mitochondrial polymporphisms in Parkinson's Disease. Neuroscience Letters, 2004, 370, 171-174.	1.0	37

#	Article	IF	CITATIONS
37	Apolipoprotein E É>4 allele in familial and sporadic Parkinson's disease. Neuroscience Letters, 2006, 406, 235-239.	1.0	36
38	Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes and Immunity, 2011, 12, 40-45.	2.2	36
39	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	2.2	36
40	A genomic screen of Spanish multiple sclerosis patients reveals multiple loci associated with the disease. Journal of Neuroimmunology, 2003, 143, 124-128.	1.1	35
41	Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics, 2008, 9, 173-182.	0.7	35
42	Genome-wide significant association ofANKRD55rs6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	1.5	34
43	Somatic mosaicism in a case of apparently sporadic Creutzfeldtâ€Jakob disease carrying a de novo D178N mutation in the <i>PRNP</i> gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1283-1291.	1.1	33
44	Therapeutic Potential of Extracellular Vesicles for Demyelinating Diseases; Challenges and Opportunities. Frontiers in Molecular Neuroscience, 2018, 11, 434.	1.4	33
45	Genes related to iron metabolism and susceptibility to Alzheimer's disease in Basque population. Neurobiology of Aging, 2007, 28, 1941-1943.	1.5	30
46	Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. Journal of Neuroimmunology, 2010, 223, 100-103.	1.1	29
47	Mitochondrial haplogroups in Basque multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 532-535.	1.4	28
48	Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CLBL genes. Multiple Sclerosis Journal, 2012, 18, 959-965.	1.4	28
49	The First Dose of Fingolimod Affects Circulating Extracellular Vesicles in Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2018, 19, 2448.	1.8	26
50	Models for Studying Myelination, Demyelination and Remyelination. NeuroMolecular Medicine, 2017, 19, 181-192.	1.8	24
51	Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 366-379.	1.4	24
52	Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6. PLoS ONE, 2013, 8, e62376.	1.1	23
53	Inflammaging and Frailty Status Do Not Result in an Increased Extracellular Vesicle Concentration in Circulation. International Journal of Molecular Sciences, 2016, 17, 1168.	1.8	22
54	Study of Mitochondrial DNA Mutations in Patients With Migraine With Prolonged Aura. Headache, 2004, 44, 674-677.	1.8	21

#	Article	lF	CITATIONS
55	RNA-Seq profiling of leukocytes reveals a sex-dependent global circular RNA upregulation in multiple sclerosis and 6 candidate biomarkers. Human Molecular Genetics, 2020, 29, 3361-3372.	1.4	21
56	Increased Transcriptional Activity of Milk-Related Genes following the Active Phase of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Journal of Immunology, 2007, 179, 4074-4082.	0.4	19
57	TACI mutation in Good's Syndrome: In search of a genetic basis. Clinical Immunology, 2012, 145, 27-30.	1.4	19
58	Expression Profiling Analysis Reveals Key MicroRNA–mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. , 2018, 59, 2381.		19
59	UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor. Multiple Sclerosis Journal, 2007, 13, 454-458.	1.4	18
60	Influence of CCR5-Δ32 genotype in Spanish population with multiple sclerosis. Neurogenetics, 2007, 8, 201-205.	0.7	17
61	Identification of ncRNAs as potential therapeutic targets in multiple sclerosis through differential ncRNA – mRNA network analysis. BMC Genomics, 2015, 16, 250.	1.2	17
62	Minimizing creatine kinase variability in rats for neuromuscular research purposes. Laboratory Animals, 2008, 42, 19-25.	0.5	16
63	Open Access of COVID-19-related publications in the first quarter of 2020: a preliminary study based in PubMed. F1000Research, 2020, 9, 649.	0.8	15
64	Phospholipase Cβ4 isozyme is expressed in human, rat, and murine heart left ventricles and in HL-1 cardiomyocytes. Molecular and Cellular Biochemistry, 2010, 337, 167-173.	1.4	14
65	Age gene expression and coexpression progressive signatures in peripheral blood leukocytes. Experimental Gerontology, 2015, 72, 50-56.	1.2	14
66	Progressive changes in non-coding RNA profile in leucocytes with age. Aging, 2017, 9, 1202-1218.	1.4	13
67	Yerba mate (Ilex paraguariensis) inhibits lymphocyte activation in vitro. Food and Function, 2016, 7, 4556-4563.	2.1	12
68	To Be or Not to Be: Circular RNAs or mRNAs From Circular DNAs?. Frontiers in Genetics, 2019, 10, 940.	1.1	12
69	T cells and immune functions of plasma extracellular vesicles are differentially modulated from adults to centenarians. Aging, 2019, 11, 10723-10741.	1.4	12
70	Association between synapsin III gene promoter SNPs and multiple sclerosis in Basque patients. Multiple Sclerosis Journal, 2009, 15, 124-128.	1.4	11
71	Open Access of COVID-19-related publications in the first quarter of 2020: a preliminary study based in PubMed. F1000Research, 2020, 9, 649.	0.8	10
72	Editorial: Novel Clinical Applications of Extracellular Vesicles. Frontiers in Immunology, 2015, 6, 381.	2.2	9

#	Article	IF	CITATIONS
73	Transcriptomic integration of D4R and MOR signaling in the rat caudate putamen. Scientific Reports, 2018, 8, 7337.	1.6	8
74	Whole-Transcriptome Analysis in Peripheral Blood Mononuclear Cells from Patients with Lipid-Specific Oligoclonal IgM Band Characterization Reveals Two Circular RNAs and Two Linear RNAs as Biomarkers of Highly Active Disease. Biomedicines, 2020, 8, 540.	1.4	8
75	Gut Microbiota Changes in Experimental Autoimmune Encephalomyelitis and Cuprizone Mice Models. ACS Chemical Neuroscience, 2021, 12, 893-905.	1.7	8
76	Profiling of Plasma Extracellular Vesicle Transcriptome Reveals That circRNAs Are Prevalent and Differ between Multiple Sclerosis Patients and Healthy Controls. Biomedicines, 2021, 9, 1850.	1.4	8
77	Neurogenetic Disorders in the Basque Population. Annals of Human Genetics, 2015, 79, 57-75.	0.3	7
78	Cognitive function in facioscapulohumeral dystrophy correlates with the molecular defect. Genes, Brain and Behavior, 2009, 8, 53-59.	1.1	5
79	ABO blood group distributions in multiple sclerosis patients from Basque Country; O ⁻ as a protective factor. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731988895.	0.5	5
80	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	1.0	5
81	Longitudinal Clinical Follow-up of a Large Family With the R357P Twinkle Mutation. JAMA Neurology, 2013, 70, 1425.	4.5	4
82	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	1.4	4
83	O group is a protective factor for COVID19 in Basque population. PLoS ONE, 2021, 16, e0249494.	1.1	3
84	Molecular Characterization of Putative Modulatory Factors in Two Spanish Families with A1555G Deafness. Audiology and Neuro-Otology, 2008, 13, 320-327.	0.6	2
85	Blood Markers in Healthy-Aged Nonagenarians: A Combination of High Telomere Length and Low Amyloidl ² Are Strongly Associated With Healthy Aging in the Oldest Old. Frontiers in Aging Neuroscience, 2018, 10, 380.	1.7	2
86	The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis. Cells, 2020, 9, 175.	1.8	1
87	Assessing the Potential of Molecular Imaging for Myelin Quantification in Organotypic Cultures. Pharmaceutics, 2021, 13, 975.	2.0	1
88	G.P.7.10 Clinical and genetic characterization of a new X-linked dominant scapuloperoneal myopathy. Neuromuscular Disorders, 2007, 17, 808.	0.3	0
89	M.P.3.14 Secondary reduction in calpain 3 expression in P-phenylenediamine-induced mitochondrial myopathy. Neuromuscular Disorders, 2007, 17, 831.	0.3	0
90	Development and validation of a LCâ€MS assay for the quantification of ikh12 a novel antiâ€ŧumor candidate in rat plasma and tissues and its application in a pharmacokinetic study. Biomedical Chromatography, 2015, 29, 1249-1258.	0.8	0

#	Article	IF	CITATIONS
91	Microbial Dysbiosis and Lack of SCFAs Production on the Gut of Patients With Multiple Sclerosis in a Spanish Cohort. SSRN Electronic Journal, 0, , .	0.4	Ο
92	Proteomic Analysis of Extracellular Vesicles in Neurological Diseases. Neuromethods, 2017, , 245-253.	0.2	0
93	Non-coding RNA and Multiple Sclerosis: New Targets for Drug Discovery. RSC Drug Discovery Series, 2019, , 285-301.	0.2	Ο
94	The innovative animal monitoring device for experimental autoimmune encephalomyelitis ("I AM D) Tj ETQq0	0 0 rgBT 0.9	Overlock 101

2022, 63, 103836.