
Mikko Tuominen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5566365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wettability performance and physicochemical properties of UV exposed superhydrophobized birch wood. Applied Surface Science, 2022, 584, 152528.	3.1	9
2	Non-fluorine surface modification of acetylated birch for improved water repellence. Holzforschung, 2021, 75, 857-868.	0.9	10
3	High-speed production of antibacterial fabrics using liquid flame spray. Textile Reseach Journal, 2020, 90, 503-511.	1.1	8
4	Superamphiphobic plastrons on wood and their effects on liquid repellence. Materials and Design, 2020, 195, 108974.	3.3	17
5	Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging. Langmuir, 2019, 35, 13275-13285.	1.6	12
6	Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface. ACS Nano, 2019, 13, 2246-2252.	7.3	13
7	On the limit of superhydrophobicity: defining the minimum amount of TiO ₂ nanoparticle coating. Materials Research Express, 2019, 6, 035004.	0.8	6
8	Effect of plasma coating on antibacterial activity of silver nanoparticles. Thin Solid Films, 2019, 672, 75-82.	0.8	19
9	Characteristics of nFOG, an aerosol-based wet thin film coating technique. Journal of Coatings Technology Research, 2018, 15, 623-632.	1.2	4
10	Icephobicity of Slippery Liquid Infused Porous Surfaces under Multiple Freeze–Thaw and Ice Accretion–Detachment Cycles. Advanced Materials Interfaces, 2018, 5, 1800828.	1.9	57
11	Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate. Applied Physics Letters, 2017, 110, .	1.5	57
12	Comparison of different coating techniques on the properties of FucoPol films. International Journal of Biological Macromolecules, 2017, 103, 268-274.	3.6	2
13	The effect of different wear on superhydrophobic wax coatings. Nordic Pulp and Paper Research Journal, 2017, 32, 195-203.	0.3	2
14	Planar fluidic channels on TiO2 nanoparticle coated paperboard. Nordic Pulp and Paper Research Journal, 2016, 31, 232-238.	0.3	4
15	Superamphiphobic overhang structured coating on a biobased material. Applied Surface Science, 2016, 389, 135-143.	3.1	38
16	Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Journal of Colloid and Interface Science, 2016, 468, 21-33.	5.0	40
17	Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung, 2016, 70, 527-537.	0.9	27
18	Roll-to-Roll Coating by Liquid Flame Spray Nanoparticle Deposition. Materials Research Society Symposia Proceedings, 2015, 1747, 37.	0.1	2

Μικκό Τυομινέν

#	Article	IF	CITATIONS
19	Long-term corrosion protection by a thin nano-composite coating. Applied Surface Science, 2015, 357, 2333-2342.	3.1	21
20	Review on Liquid Flame Spray in paper converting: Multifunctional superhydrophobic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2014, 29, 747-759.	0.3	11
21	Creation of superhydrophilic surfaces of paper and board. Journal of Adhesion Science and Technology, 2014, 28, 864-879.	1.4	15
22	Superhydrophobic Coatings on Celluloseâ€Based Materials: Fabrication, Properties, and Applications. Advanced Materials Interfaces, 2014, 1, 1300026.	1.9	221
23	Paper-Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Applied Materials & Interfaces, 2014, 6, 20060-20066.	4.0	107
24	Switchable water absorption of paper via liquid flame spray nanoparticle coating. Cellulose, 2014, 21, 2033-2043.	2.4	3
25	Adjustable wetting of Liquid Flame Spray (LFS) TiO ₂ -nanoparticle coated board: Batch-type versus roll-to-roll stimulation methods. Nordic Pulp and Paper Research Journal, 2014, 29, 271-279.	0.3	4
26	The Effect of Flame Treatment on Surface Properties and Heat Sealability of Lowâ€Density Polyethylene Coating. Packaging Technology and Science, 2013, 26, 201-214.	1.3	6
27	High- and low-adhesive superhydrophobicity on the liquid flame spray-coated board and paper: structural effects on surface wetting and transition between the low- and high-adhesive states. Colloid and Polymer Science, 2013, 291, 447-455.	1.0	15
28	Compressibility of porous TiO2 nanoparticle coating on paperboard. Nanoscale Research Letters, 2013, 8, 444.	3.1	10
29	Wear resistance of nanoparticle coatings on paperboard. Wear, 2013, 307, 112-118.	1.5	22
30	Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer. Cellulose, 2013, 20, 391-408.	2.4	31
31	ToF-SIMS Analysis of UV-Switchable TiO ₂ -Nanoparticle-Coated Paper Surface. Langmuir, 2013, 29, 3780-3790.	1.6	36
32	Nanostructures Increase Water Droplet Adhesion on Hierarchically Rough Superhydrophobic Surfaces. Langmuir, 2012, 28, 3138-3145.	1.6	107
33	Surface chemical characterization of nanoparticle coated paperboard. Applied Surface Science, 2012, 258, 3119-3125.	3.1	25
34	Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray. Journal of Aerosol Science, 2012, 52, 57-68.	1.8	34
35	Surface chemical analysis of photocatalytic wettability conversion of TiO2 nanoparticle coating. Surface and Coatings Technology, 2012, 208, 73-79.	2.2	40
36	Top layer coatability on barrier coatings. Progress in Organic Coatings, 2012, 73, 26-32.	1.9	19

Μικκό Τυομινέν

#	Article	IF	CITATIONS
37	Reel-to-reel inline atmospheric plasma deposition of hydrophobic coatings. Journal of Coatings Technology Research, 2011, 8, 237-245.	1.2	13
38	Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Applied Surface Science, 2011, 257, 1911-1917.	3.1	56
39	Adhesion Mechanism of Water Droplets on Hierarchically Rough Superhydrophobic Rose Petal Surface. Journal of Nanomaterials, 2011, 2011, 1-6.	1.5	64
40	Nanoparticle Deposition from Liquid Flame Spray onto Moving Roll-to-Roll Paperboard Material. Aerosol Science and Technology, 2011, 45, 827-837.	1.5	49
41	Effects of flame and corona treatment on extrusion coated paper properties. Tappi Journal, 2011, 10, 29-37.	0.2	6
42	Bioâ€hybrid nanocomposite coatings from sonicated chitosan and nanoclay. Journal of Applied Polymer Science, 2010, 116, 3638-3647.	1.3	22
43	Development of superhydrophobic coating on paperboard surface using the Liquid Flame Spray. Surface and Coatings Technology, 2010, 205, 436-445.	2.2	108
44	The Influence of Flame, Corona and Atmospheric Plasma Treatments on Surface Properties and Digital Print Quality of Extrusion Coated Paper. Journal of Adhesion Science and Technology, 2010, 24, 471-492.	1.4	35
45	Effects of atmospheric plasma activation on surface properties of pigment-coated and surface-sized papers. Applied Surface Science, 2008, 255, 3217-3229.	3.1	30
46	Ageing effect in atmospheric plasma activation of paper substrates. Surface and Coatings Technology, 2008, 202, 3777-3786.	2.2	21
47	Influence of atmospheric plasma activation on sheet-fed offset print quality. Nordic Pulp and Paper Research Journal, 2008, 23, 181-188.	0.3	8