
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565923/publications.pdf Version: 2024-02-01

LODGE F Assis

#	Article	IF	CITATIONS
1	Bioâ€ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 2018, 27, 277-284.	2.7	567
2	European seaweeds under pressure: Consequences for communities and ecosystem functioning. Journal of Sea Research, 2015, 98, 91-108.	0.6	155
3	Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 2018, 24, e55-e66.	4.2	140
4	Status, trends and drivers of kelp forests in Europe: an expert assessment. Biodiversity and Conservation, 2016, 25, 1319-1348.	1.2	106
5	High and Distinct Range-Edge Genetic Diversity despite Local Bottlenecks. PLoS ONE, 2013, 8, e68646.	1.1	90
6	Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Scientific Reports, 2017, 7, 44348.	1.6	87
7	Deep reefs are climatic refugia for genetic diversity of marine forests. Journal of Biogeography, 2016, 43, 833-844.	1.4	84
8	Seagrasses in Portugal: A most endangered marine habitat. Aquatic Botany, 2013, 104, 193-203.	0.8	79
9	Climateâ€driven range shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a marine brown alga. Molecular Ecology, 2014, 23, 2797-2810.	2.0	77
10	Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography, 2022, 31, 1422-1439.	2.7	75
11	Tropicalization of fish assemblages in temperate biogeographic transition zones. Marine Ecology - Progress Series, 2014, 504, 241-252.	0.9	71
12	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	3.9	68
13	Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Marine Environmental Research, 2016, 113, 174-182.	1.1	67
14	Habitat continuity and steppingâ€stone oceanographic distances explain population genetic connectivity of the brown alga <i>Cystoseira amentacea</i> . Molecular Ecology, 2017, 26, 766-780.	2.0	66
15	Imprint of Climate Change on Pan-Arctic Marine Vegetation. Frontiers in Marine Science, 2020, 7, .	1.2	63
16	Species distribution models and mitochondrial <scp>DNA</scp> phylogeography suggest an extensive biogeographical shift in the highâ€intertidal seaweed <i>Pelvetia canaliculata</i> . Journal of Biogeography, 2014, 41, 1137-1148.	1.4	61
17	Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima. Scientific Reports, 2018, 8, 1112.	1.6	61
18	Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores. PLoS ONE, 2015, 10, e0128124.	1.1	58

#	Article	IF	CITATIONS
19	Seascape drivers of <i><scp>M</scp>acrocystis pyrifera</i> population genetic structure in the northeast <scp>P</scp> acific. Molecular Ecology, 2015, 24, 4866-4885.	2.0	55
20	Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls. Ecology, 2013, 94, 499-509.	1.5	54
21	Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata. PLoS ONE, 2015, 10, e0131530.	1.1	52
22	Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts, 2016, 39, 123-137.	1.0	51
23	A fine-tuned global distribution dataset of marine forests. Scientific Data, 2020, 7, 119.	2.4	45
24	Past climate changes and strong oceanographic barriers structured low″atitude genetic relics for the golden kelp <i>Laminaria ochroleuca</i> . Journal of Biogeography, 2018, 45, 2326-2336.	1.4	44
25	Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Marine Environmental Research, 2020, 154, 104827.	1.1	38
26	Performing fish counts with a wide-angle camera, a promising approach reducing divers' limitations. Journal of Experimental Marine Biology and Ecology, 2013, 445, 93-98.	0.7	35
27	Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling. Scientific Reports, 2016, 6, 36460.	1.6	35
28	Kelps' Long-Distance Dispersal: Role of Ecological/Oceanographic Processes and Implications to Marine Forest Conservation. Diversity, 2018, 10, 11.	0.7	34
29	Comparison of small remotely operated vehicles and diver-operated video of circalittoral benthos. Hydrobiologia, 2016, 766, 247-260.	1.0	30
30	Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Molecular Ecology, 2021, 30, 3840-3855.	2.0	30
31	Climate Oscillations, Range Shifts and Phylogeographic Patterns of North Atlantic Fucaceae. , 2016, , 279-308.		27
32	Bottom Trawling Threatens Future Climate Refugia of Rhodoliths Globally. Frontiers in Marine Science, 2021, 7, .	1.2	27
33	Rejection of the genetic implications of the "Abundant Centre Hypothesis―in marine mussels. Scientific Reports, 2020, 10, 604.	1.6	23
34	Reduced Global Genetic Differentiation of Exploited Marine Fish Species. Molecular Biology and Evolution, 2021, 38, 1402-1412.	3.5	23
35	Global biodiversity patterns of marine forests of brown macroalgae. Global Ecology and Biogeography, 2022, 31, 636-648.	2.7	22
36	Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine mussel. Scientific Reports, 2017, 7, 10279.	1.6	20

#	Article	IF	CITATIONS
37	Weak biodiversity connectivity in the European network of no-take marine protected areas. Science of the Total Environment, 2021, 773, 145664.	3.9	20
38	Underwater towed video: a useful tool to rapidly assess elasmobranch populations in large marine protected areas. Journal of Coastal Conservation, 2007, 11, 153-157.	0.7	16
39	High Interannual Variability in Connectivity and Genetic Pool of a Temperate Clingfish Matches Oceanographic Transport Predictions. PLoS ONE, 2016, 11, e0165881.	1.1	16
40	Major Expansion of Marine Forests in a Warmer Arctic. Frontiers in Marine Science, 2022, 9, .	1.2	16
41	Impact of ecotourism on the fish fauna of Bonito region (Mato Grosso do Sul State, Brazil): ecological, behavioural and physiological measures. Neotropical Ichthyology, 2014, 12, 133-143.	0.5	15
42	Drivers of Cape Verde archipelagic endemism in keyhole limpets. Scientific Reports, 2017, 7, 41817.	1.6	14
43	Trends and drivers of marine fish landings in Portugal since its entrance in the European Union. ICES Journal of Marine Science, 2020, 77, 988-1001.	1.2	13
44	Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple transition zones. ICES Journal of Marine Science, 2020, 77, 371-378.	1.2	12
45	Climateâ€induced range shifts shaped the present and threaten the future genetic variability of a marine brown alga in the Northwest Pacific. Evolutionary Applications, 2021, 14, 1867-1879.	1.5	12
46	Habitat suitability modelling of four terrestrial slug species in the Iberian Peninsula (Arionidae:Geomalacusspecies). Journal of Molluscan Studies, 2015, 81, 427-434.	0.4	11
47	Spearfishing in Portugal: A baseline study on spearfishers' profiles, habits and perceptions towards management measures. Fisheries Management and Ecology, 2018, 25, 417-428.	1.0	11
48	Reprint of "Seagrasses in Portugal: A most endangered marine habitat― Aquatic Botany, 2014, 115, 3-13.	0.8	10
49	How experimental physiology and ecological niche modelling can inform the management of marine bioinvasions?. Science of the Total Environment, 2020, 700, 134692.	3.9	10
50	Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean. PeerJ, 2019, 7, e6794.	0.9	10
51	Biologically meaningful distribution models highlight the benefits of the Paris Agreement for demersal fishing targets in the North Atlantic Ocean. Global Ecology and Biogeography, 2021, 30, 1643-1656.	2.7	9
52	Potential Biodiversity Connectivity in the Network of Marine Protected Areas in Western Africa. Frontiers in Marine Science, 2021, 8, .	1.2	9
53	Ocean currents shape the genetic structure of a kelp in southwestern Africa. Journal of Biogeography, 2022, 49, 822-835.	1.4	9
54	A concise review of the brown seaweed Sargassum thunbergii — a knowledge base to inform large-scale cultivation efforts. Journal of Applied Phycology, 2021, 33, 3469-3482.	1.5	6

#	Article	IF	CITATIONS
55	Detecting no natural hybridization and predicting range overlap in Saccharina angustata and Saccharina japonica. Journal of Applied Phycology, 2021, 33, 693-702.	1.5	3
56	Seagrass Connectivity on the West Coast of Africa Supports the Hypothesis of Grazer-Mediated Seed Dispersal. Frontiers in Marine Science, 0, 9, .	1.2	3
57	Climate change and Brazil's coastal zone: socio-environmental vulnerabilities and action strategies. Sustentabilidade Em Debate, 2020, 11, 405-444.	0.4	2
58	Phenotypic Plasticity in Sargassum Forests May Not Counteract Projected Biomass Losses Along a Broad Latitudinal Gradient. Ecosystems, 2023, 26, 29-41.	1.6	1