Mehmet Bİlgİn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic solvent extraction of sour cherry peels and storage stability of the products. Biomass Conversion and Biorefinery, 2022, 12, 5197-5207.	4.6	3
2	Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 2022, 12, 351-360.	4.6	37
3	Hydrophobic carboxylic acid based deep eutectic solvent for the removal of diclofenac. Biomass Conversion and Biorefinery, 2022, 12, 2219-2227.	4.6	13
4	Valorization of peach (Prunus persica L.) waste into speciality products via green methods. Biomass Conversion and Biorefinery, 2022, 12, 123-132.	4.6	7
5	Preparation of chromium fumarate metal-organic frameworks for removal of pharmaceutical compounds from water. Korean Journal of Chemical Engineering, 2022, 39, 638-645.	2.7	1
6	Recovery of anthocyanins from sour cherry <i>(Prunus cerasus L.)</i> peels via microwave assisted extraction: monitoring the storage stability. Preparative Biochemistry and Biotechnology, 2021, 51, 1-11.	1.9	12
7	Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: a sustainable environment for bioactive materials. Preparative Biochemistry and Biotechnology, 2021, 51, 422-429.	1.9	8
8	Enhanced extraction of high added-value products from Hibiscus sabdariffa using automatic solvent extractor: Kinetics and modeling. Sustainable Chemistry and Pharmacy, 2021, 19, 100356.	3.3	6
9	Enrichment of Hazelnut Oil with Several Polyphenols: An Alternative Approach to A New Functional Food. Journal of Oleo Science, 2021, 70, 11-19.	1.4	2
10	Carbamazepine sorption characteristics onto bentonite clay: Box-Behnken process design. Sustainable Chemistry and Pharmacy, 2020, 18, 100323.	3.3	7
11	Recovery of hydroxytyrosol onto graphene oxide nanosheets: Equilibrium and kinetic models. Journal of Molecular Liquids, 2019, 285, 213-222.	4.9	11
12	Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (<i>Olea europaea</i>) leaf. Journal of Food Processing and Preservation, 2018, 42, e13604.	2.0	65
13	Olive tree (<scp><i>Olea europaea</i></scp> L.) leaf as a waste byâ€product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture, 2018, 98, 1271-1279.	3.5	132
14	Oxidative stability of sesame oil extracted from the seeds with different origins: Kinetic and thermodynamic studies under accelerated conditions. Journal of Food Process Engineering, 2018, 41, e12878.	2.9	14
15	Optimizing the extraction of polyphenols from Sideritis montana L. using response surface methodology. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 137-143.	2.8	22
16	Investigation of extractive interaction between ionic liquids and carbamazepine. Journal of Molecular Liquids, 2018, 268, 523-528.	4.9	6
17	Assessment of lipid oxidation in cottonseed oil treated with phytonutrients: Kinetic and thermodynamic studies. Industrial Crops and Products, 2018, 124, 593-599.	5.2	31
18	Screening of the most consumed beverages and spices for their bioactive non-nutrient contents. Journal of Food Measurement and Characterization, 2018, 12, 2289-2301.	3.2	7

Mehmet Bİlgİn

#	Article	IF	CITATIONS
19	Estimation of liquidâ€liquid equilibrium of type 2 systems (water + valeric acid + monobasic es Chemical Engineering, 2018, 96, 815-828.	ter or) Tj E 1.7	TQq1 1 0.78 7
20	Comparison of different polymeric resins for naproxen removal from wastewater. Journal of Molecular Liquids, 2017, 241, 633-637.	4.9	17
21	Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil. Journal of Food Science and Technology, 2017, 54, 1721-1728.	2.8	26
22	Effects of natural antioxidants in the improvement of corn oil quality: olive leaf vs. lemon balm. International Journal of Food Science and Technology, 2017, 52, 374-380.	2.7	17
23	Investigation of the separation of carboxylic acids from aqueous solutions using a pilot scale membrane unit. Journal of Molecular Liquids, 2017, 248, 391-398.	4.9	14
24	Selective adsorption of oleuropein from olive (<i>Olea europaea</i>) leaf extract using macroporous resin. Chemical Engineering Communications, 2017, 204, 1391-1400.	2.6	13
25	Optimal Reactive Extraction of Valeric Acid from Aqueous Solutions Using Tri- n -propyl amine/Diluent and Dibenzyl amine/Diluent Systems. Chemical and Biochemical Engineering Quarterly, 2016, 30, 317-330.	0.9	8
26	Modeling phase equilibria of ternary systems (waterÂ+Âformic acidÂ+Âester or alcohol) through UNIFAC-original, SERLAS, NRTL, NRTL-modified, and three-suffix Margules: Parameter estimation using genetic algorithm. Fluid Phase Equilibria, 2016, 429, 254-265.	2.5	25
27	Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: Extension of the LSER approach. Fluid Phase Equilibria, 2015, 385, 153-165.	2.5	10
28	Ternary phase diagrams for aqueous mixtures of butyric acid with several solvents: Experimental and correlated data. Fluid Phase Equilibria, 2014, 371, 50-56.	2.5	7
29	Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea) Tj ETQq1 1 0.78	4314 rgBT	·/Qyerlock 1(
30	OBTAINING SCARLET SAGE (SALVIA COCCINEA) EXTRACT THROUGH HOMOGENIZER- AND ULTRASOUND-ASSISTED EXTRACTION METHODS. Chemical Engineering Communications, 2013, 200, 1197-1209.	2.6	22
31	Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Separation Science and Technology, 2011, 46, 1829-1837.	2.5	55
32	Liquid phase equilibria of (water+formic acid+diethyl carbonate or diethyl malonate or diethyl) Tj ETQq0 0 0 rgBT 249-253.	/Overlock 2.5	10 Tf 50 227 21
33	(Liquid+liquid) equilibria of (heptane, or hexane, or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 187 Td (cyclob Chemical Thermodynamics, 2010, 42, 530-535.	iexane+tol 2.0	uene+1,3-dir 7
34	Separation of propionic acid by diethyl carbonate or diethyl malonate or diethyl fumarate and the synergistic effect of phosphorus compounds and amines. Fluid Phase Equilibria, 2010, 292, 13-19.	2.5	6
35	Investigation of Formic Acid Separation from Aqueous Solution by Reactive Extraction: Effects of Extractant and Diluent. Journal of Chemical & Engineering Data, 2010, 55, 1519-1522.	1.9	55

 $_{36}$ Liquid Phase Equilibria for Mixtures of (Water + Morpholine + Ethyl Nonanoate, Dimethyl Phthalate,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{1.9}^{50}$

Mehmet Bİlgİn

#	Article	IF	CITATIONS
37	(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems. Journal of Chemical Thermodynamics, 2009, 41, 97-102.	2.0	27
38	Extraction Equilibria of Propionic and Butyric Acids with Tri- <i>n</i> -octylphosphine Oxide/Diluent Systems. Journal of Chemical & Engineering Data, 2009, 54, 3008-3013.	1.9	22
39	Liquidâ^'Liquid Equilibria of (Water + Acetic Acid + Diethyl Succinate or Diethyl Glutarate or Diethyl) Tj ETQq1 1 0	.784314 r 1.9	gBT_/Overloc
40	(Liquid+liquid) equilibria of (water+butyric acid+esters) ternary systems. Journal of Chemical Thermodynamics, 2007, 39, 1279-1285.	2.0	26
41	(Liquid+liquid) equilibria of (water+butyric acid+dibasic esters) ternary systems. Journal of Chemical Thermodynamics, 2007, 39, 284-290.	2.0	34
42	(Liquid+liquid) equilibria of (water+propionic acid+diethyl succinate or diethyl glutarate or diethyl) Tj ETQq0 0 0 r	gBT /Over 2.0	lock 10 Tf 50
43	Measurements of Quaternary Liquidâ^'Liquid Equilibrium for Water + Acetic Acid + Propionic Acid + Solvent (Butyronitrile, Benzyl Acetate, or Methyl Isobutyl Ketone) at 298.15 K. Journal of Chemical & Engineering Data, 2006, 51, 1066-1069.	1.9	15
44	Distribution of Butyric Acid between Water and Several Solvents. Journal of Chemical & Engineering Data, 2006, 51, 1546-1550.	1.9	35
45	(Liquid+liquid) equilibria of (water+propionic acid+alcohol) ternary systems. Journal of Chemical Thermodynamics, 2006, 38, 1503-1509.	2.0	27
46	Liquid phase equilibria of (water+propionic acid+oleyl alcohol) ternary system at several temperatures. Fluid Phase Equilibria, 2006, 250, 59-63.	2.5	31
47	Phase equilibria of liquid (water+butyric acid+oleyl alcohol) ternary system. Journal of Chemical Thermodynamics, 2006, 38, 1634-1639.	2.0	28
48	(Liquid+liquid) equilibria of (water+butyric acid+cyclohexyl acetate) ternary system. Journal of Chemical Thermodynamics, 2005, 37, 175-180.	2.0	33
49	(Liquid+liquid) equilibria of (water+butyric acid+isoamyl alcohol) ternary system. Journal of Chemical Thermodynamics, 2005, 37, 297-303.	2.0	38
50	Quaternary Liquidâ^'Liquid Equilibrium of Water + Acetic Acid + Propionic Acid + Solvent (Amyl) Tj ETQq0 0 0 rgB 49, 1456-1459.	T /Overloc 1.9	k 10 Tf 50 22 25
51	Isobaric vapour-liquid equilibrium calculations of binary systems using neural network. Journal of the Serbian Chemical Society, 2004, 69, 669-674.	0.8	13
52	Optimization of extractive removal of formic acid from water by tri-n-propyl amine and dibenzyl amine in mono and dibasic ester diluents: LSER modeling. , 0, 60, 144-159.		0