
Carlotta Perucca Orfei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: the example of joint disease. Stem Cell Research and Therapy, 2020, 11, 165.	5.5	76
2	Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Research and Therapy, 2019, 10, 109.	5.5	60
3	Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy, 2019, 21, 1179-1197.	0.7	54
4	Signature quality attributes of CD146+ mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells, 2020, 38, 1034-1049.	3.2	54
5	Secreted Factors and EV-miRNAs Orchestrate the Healing Capacity of Adipose Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis. International Journal of Molecular Sciences, 2020, 21, 1582.	4.1	46
6	Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Translational Medicine, 2021, 10, 1044-1062.	3.3	46
7	Human Diseased Articular Cartilage Contains a Mesenchymal Stem Cell-Like Population of Chondroprogenitors with Strong Immunomodulatory Responses. Journal of Clinical Medicine, 2019, 8, 423.	2.4	42
8	In Vitro Induction of Tendon-Specific Markers in Tendon Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFÎ23, BMP-12 and Ascorbic Acid Stimulation. International Journal of Molecular Sciences, 2019, 20, 149.	4.1	41
9	Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Scientific Reports, 2019, 9, 10864.	3.3	39
10	Fabrication of Innovative Silk/Alginate Microcarriers for Mesenchymal Stem Cell Delivery and Tissue Regeneration. International Journal of Molecular Sciences, 2017, 18, 1829.	4.1	35
11	Identification of miRNA Reference Genes in Extracellular Vesicles from Adipose Derived Mesenchymal Stem Cells for Studying Osteoarthritis. International Journal of Molecular Sciences, 2019, 20, 1108.	4.1	35
12	Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy. Regenerative Medicine, 2015, 10, 729-743.	1.7	33
13	Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. Journal of Orthopaedic Surgery and Research, 2016, 11, 163.	2.3	29
14	Dose-Related and Time-Dependent Development of Collagenase-Induced Tendinopathy in Rats. PLoS ONE, 2016, 11, e0161590.	2.5	24
15	Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells, 2019, 8, 369.	4.1	23
16	Cartilage Protective and Immunomodulatory Features of Osteoarthritis Synovial Fluid-Treated Adipose-Derived Mesenchymal Stem Cells Secreted Factors and Extracellular Vesicles-Embedded miRNAs. Cells, 2021, 10, 1072.	4.1	21
17	Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of Collagenase-Induced Tendinopathy. Cells, 2019, 8, 1411.	4.1	17
18	miR-22-5p and miR-29a-5p Are Reliable Reference Genes for Analyzing Extracellular Vesicle-Associated miRNAs in Adipose-Derived Mesenchymal Stem Cells and Are Stable under Inflammatory Priming Mimicking Osteoarthritis Condition. Stem Cell Reviews and Reports, 2019, 15, 743-754.	3.8	17

#	Article	IF	CITATIONS
19	Housekeeping Gene Stability in Human Mesenchymal Stem and Tendon Cells Exposed to Tenogenic Factors. Tissue Engineering - Part C: Methods, 2018, 24, 360-367.	2.1	16
20	Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Research and Therapy, 2022, 13, 142.	5.5	16
21	In Vitro Study of Extracellular Vesicles Migration in Cartilage-Derived Osteoarthritis Samples Using Real-Time Quantitative Multimodal Nonlinear Optics Imaging. Pharmaceutics, 2020, 12, 734.	4.5	14
22	Innovative Visualization and Quantification of Extracellular Vesicles Interaction with and Incorporation in Target Cells in 3D Microenvironments. Cells, 2020, 9, 1180.	4.1	14
23	miR-103a-3p and miR-22-5p Are Reliable Reference Genes in Extracellular Vesicles From Cartilage, Adipose Tissue, and Bone Marrow Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 632440.	4.1	14
24	Effects of the pulsed electromagnetic field PST® on human tendon stem cells: a controlled laboratory study. BMC Complementary and Alternative Medicine, 2016, 16, 293.	3.7	13
25	Pain and Functional Scores in Patients Affected by Knee OA after Treatment with Pulsed Electromagnetic and Magnetic Fields: A Meta-Analysis. Cartilage, 2021, 13, 1749S-1760S.	2.7	13
26	Silk/Fibroin Microcarriers for Mesenchymal Stem Cell Delivery: Optimization of Cell Seeding by the Design of Experiment. Pharmaceutics, 2018, 10, 200.	4.5	12
27	miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells. Pharmaceutics, 2020, 12, 347.	4.5	12
28	Adipose-Derived Mesenchymal Stromal Cells Treated with Interleukin 1 Beta Produced Chondro-Protective Vesicles Able to Fast Penetrate in Cartilage. Cells, 2021, 10, 1180.	4.1	12
29	Vitamin D's Effect on the Proliferation and Inflammation of Human Intervertebral Disc Cells in Relation to the Functional Vitamin D Receptor Gene Fokl Polymorphism. International Journal of Molecular Sciences, 2018, 19, 2002.	4.1	10
30	Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. International Orthopaedics, 2021, 45, 419-426.	1.9	10
31	High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis. International Journal of Molecular Sciences, 2017, 18, 2073.	4.1	9
32	Reliable Reference Genes for Gene Expression Assessment in Tendon-Derived Cells under Inflammatory and Pro-Fibrotic/Healing Stimuli. Cells, 2019, 8, 1188.	4.1	9
33	Autologous Microfragmented Adipose Tissue Reduces the Catabolic and Fibrosis Response in an In Vitro Model of Tendon Cell Inflammation. Stem Cells International, 2019, 2019, 1-10.	2.5	9
34	Superior Osteo-Inductive and Osteo-Conductive Properties of Trabecular Titanium vs. PEEK Scaffolds on Human Mesenchymal Stem Cells: A Proof of Concept for the Use of Fusion Cages. International Journal of Molecular Sciences, 2021, 22, 2379.	4.1	7
35	Validation of reference and identity-defining genes in human mesenchymal stem cells cultured under unrelated fetal bovine serum batches for basic science and clinical application. Stem Cell Reviews and Reports, 2018, 14, 837-846.	5.6	6
36	High-Throughput Gene and Protein Analysis Revealed the Response of Disc Cells to Vitamin D, Depending on the VDR Fokl Variants. International Journal of Molecular Sciences, 2021, 22, 9603.	4.1	6

#	Article	IF	CITATIONS
37	Pulsed electromagnetic fields improve the healing process of Achilles tendinopathy. Bone and Joint Research, 2020, 9, 613-622.	3.6	5
38	Human Tendon Stem/Progenitor Cell Features and Functionality Are Highly Influenced by in vitro Culture Conditions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 711964.	4.1	4
39	In vitro characterization of stem/progenitor cells from semitendinosus and gracilis tendons as a possible new tool for cell-based therapy for tendon disorders. Joints, 0, , .	1.5	4
40	A single step, centrifuge-free method to harvest bone marrow highly concentrated in mesenchymal stem cells: results of a pilot trial. International Orthopaedics, 2022, 46, 391-400.	1.9	4
41	Characterization of Microfragmented Adipose Tissue Architecture, Mesenchymal Stromal Cell Content and Release of Paracrine Mediators. Journal of Clinical Medicine, 2022, 11, 2231.	2.4	4
42	A2A adenosine receptors are involved in the reparative response of tendon cells to pulsed electromagnetic fields. PLoS ONE, 2020, 15, e0239807.	2.5	2
43	Tendon Cells Derived From The Long Head Of The Biceps And The Supraspinatus Tendons Of Patients Affected By Rotator Cuff Tears Show Different Expression Of Inflammatory Markers. Connective Tissue Research, 2021, 62, 570-579.	2.3	2
44	Joint Tissue Protective and Immune-Modulating miRNA Landscape of Mesenchymal Stromal Cell-Derived Extracellular Vesicles under Different Osteoarthritis-Mimicking Conditions. Pharmaceutics, 2022, 14, 1400.	4.5	2
45	Gene Therapy, Growth Factors, Mesenchymal Cells, New Trends and Future Perspectives. , 2016, , 559-575.		1
46	Evaluation of Different Seeding Methods for Cell-Seeded Collagen Matrix-Supported Autologous Chondrocyte Transplantation. Joints, 2018, 06, 215-219.	1.5	1
47	The Effect of Three Different Suture Anchors for Rotator Cuff Repair on Primary Cultures of Human Bone Marrow Mesenchymal Stem Cells. Joints, 2018, 06, 100-103.	1.5	1
48	Comparison of miRNA cargo in human adipose-tissue vs. amniotic-membrane derived mesenchymal stromal cells extracellular vesicles for osteoarthritis treatment. , 0, , .		1
49	Endogenous Controls for the Evaluation of Osteoarthritis-Related miRNAs in Extracellular Vesicles from Bone-Marrow-Derived Mesenchymal Stromal Cells and the Impact of Osteoarthritis Synovial Fluid. Biomolecules, 2022, 12, 316.	4.0	1

50 Fat-Derived Stem Cells. , 2022, , 221-230.

0