Keiichiro Yoshinaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What is the Prognostic Value of Myocardial Perfusion Imaging Using Rubidium-82 Positron Emission Tomography?. Journal of the American College of Cardiology, 2006, 48, 1029-1039.	2.8	333
2	Quantification of Myocardial Blood Flow inÂAbsolute Terms Using 82Rb PET Imaging. JACC: Cardiovascular Imaging, 2014, 7, 1119-1127.	5.3	144
3	The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. Journal of Nuclear Cardiology. 2016, 23, 244-252.	2.1	142
4	Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology Recommendations. Annals of Nuclear Medicine, 2014, 28, 393-403.	2.2	140
5	New Guidelines for Diagnosis of Cardiac Sarcoidosis in Japan. Annals of Nuclear Cardiology, 2017, 3, 42-45.	0.2	138
6	18F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1773-1783.	6.4	124
7	Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15–labeled water PET. Journal of Nuclear Cardiology, 2003, 10, 275-283.	2.1	116
8	Repeatability of Rest and Hyperemic Myocardial Blood Flow Measurements with ⁸² Rb Dynamic PET. Journal of Nuclear Medicine, 2009, 50, 68-71.	5.0	92
9	Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow?. Journal of Nuclear Cardiology, 2007, 14, 380-397.	2.1	86
10	Effects of Short-Term Continuous Positive Airway Pressure on Myocardial Sympathetic Nerve Function and Energetics in Patients With Heart Failure and Obstructive Sleep Apnea. Circulation, 2014, 130, 892-901.	1.6	80
11	The Effects of Continuous Positive Airway Pressure on Myocardial Energetics in Patients With Heart Failure and Obstructive Sleep Apnea. Journal of the American College of Cardiology, 2007, 49, 450-458.	2.8	66
12	Antitumor effects of radionuclide treatment using α-emitting meta-211At-astato-benzylguanidine in a PC12 pheochromocytoma model. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 999-1010.	6.4	58
13	Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging—From basic aspects to clinical applications. Journal of Cardiology, 2010, 55, 163-173.	1.9	57
14	Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for diagnosis of cardiac sarcoidosis—2018 update: Japanese Society of Nuclear Cardiology recommendations. Journal of Nuclear Cardiology, 2019, 26, 1414-1433.	2.1	57
15	Incremental Diagnostic Value of Regional Myocardial Blood Flow Quantification Over Relative Perfusion Imaging With Generator-Produced Rubidium-82 PET. Circulation Journal, 2011, 75, 2628-2634.	1.6	50
16	Elevated 18F-fluorodeoxyglucose uptake in the interventricular septum is associated with atrioventricular block in patients with suspected cardiac involvement sarcoidosis. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1558-1566.	6.4	50
17	Application of Cardiac Molecular Imaging Using Positron Emission Tomography in Evaluation of Drug and Therapeutics for Cardiovascular Disorders. Current Pharmaceutical Design, 2005, 11, 903-932.	1.9	46
18	Radiopharmaceutical tracers for cardiac imaging. Journal of Nuclear Cardiology, 2018, 25, 1204-1236.	2.1	46

KEIICHIRO YOSHINAGA

#	Article	IF	CITATIONS
19	Imaging myocardial metabolism. Current Opinion in Biotechnology, 2007, 18, 52-59.	6.6	45
20	Assessment of coronary endothelial function using PET. Journal of Nuclear Cardiology, 2011, 18, 486-500.	2.1	42
21	Effects and safety of 1311-metaiodobenzylguanidine (MIBG) radiotherapy in malignant neuroendocrine tumors: Results from a multicenter observational registry. Endocrine Journal, 2014, 61, 1171-1180.	1.6	41
22	Quantitative analysis of coronary endothelial function with generator-produced 82Rb PET: comparison with 15O-labelled water PET. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 2233-2241.	6.4	35
23	Quantification of regional myocardial blood flow estimation with three-dimensional dynamic rubidium-82 PET and modified spillover correction model. Journal of Nuclear Cardiology, 2012, 19, 763-774.	2.1	31
24	Current status of nuclear cardiology in Japan: Ongoing efforts to improve clinical standards and to establish evidence. Journal of Nuclear Cardiology, 2015, 22, 690-699.	2.1	31
25	Physiological Assessment of Myocardial Perfusion Using Nuclear Cardiology Would Enhance Coronary Artery Disease Patient Care - Which Imaging Modality Is Best for Evaluation of Myocardial Ischemia? (SPECT-Side) Circulation Journal, 2011, 75, 713-723.	1.6	28
26	Long-term smoking causes more advanced coronary endothelial dysfunction in middle-aged smokers compared to young smokers. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 491-498.	6.4	28
27	Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine: Perspectives from Japan and Europe. Journal of Nuclear Cardiology, 2017, 24, 952-960.	2.1	28
28	Myocardial Blood Flow Quantification Using Positron-Emission Tomography. Circulation Journal, 2013, 77, 1662-1671.	1.6	26
29	Absolute quantification of myocardial blood flow. Journal of Nuclear Cardiology, 2018, 25, 635-651.	2.1	23
30	Early Detection of Cardiac Sarcoid Lesions with 18F-fluoro-2-deoxyglucose Positron Emission Tomography. Internal Medicine, 2011, 50, 1207-1209.	0.7	22
31	Attenuated right ventricular energetics evaluated using 11C-acetate PET in patients with pulmonary hypertension. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1240-1250.	6.4	21
32	lschaemic memory imaging using metabolic radiopharmaceuticals: overview of clinical settings and ongoing investigations. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 384-393.	6.4	20
33	Heterogeneous Reduction of Myocardial Oxidative Metabolism in Patients With Ischemic and Dilated Cardiomyopathy Using C-11 Acetate PET. Circulation Journal, 2008, 72, 786-792.	1.6	19
34	Draft guidelines regarding appropriate use of 1311-MIBG radiotherapy for neuroendocrine tumors. Annals of Nuclear Medicine, 2015, 29, 543-552.	2.2	19
35	Preclinical Evaluation of the Acute Radiotoxicity of the α-Emitting Molecular-Targeted Therapeutic Agent 211At-MABG for the Treatment of Malignant Pheochromocytoma in Normal Mice. Translational Oncology, 2019, 12, 879-888.	3.7	19
36	A serial echocardiographic observation of acute heart injury associated with pheochromocytoma crisis. International Journal of Cardiology, 1998, 66, 199-202.	1.7	18

KEIICHIRO YOSHINAGA

#	Article	IF	CITATIONS
37	Effect of exercise training on myocardial blood flow in patients with stable coronary artery disease. American Heart Journal, 2006, 151, 1324.e11-1324.e18.	2.7	17
38	Japanese Guidelines for Cardiac Sarcoidosis. Annals of Nuclear Cardiology, 2017, 3, 121-124.	0.2	17
39	How do we establish cardiac sympathetic nervous system imaging with 123I-mIBC in clinical practice? Perspectives and lessons from Japan and the US. Journal of Nuclear Cardiology, 2019, 26, 1434-1451.	2.1	15
40	Current Japanese Ministry of Health, Labor, and Welfare Approval of Cardiac Positron Emission Tomography. Annals of Nuclear Cardiology, 2015, 1, 106-107.	0.2	14
41	Prone-position acquisition of myocardial 1231-metaiodobenzylguanidine (MIBG) SPECT reveals regional uptake similar to that found using 11C-hydroxyephedrine PET/CT. Annals of Nuclear Medicine, 2014, 28, 761-769.	2.2	12
42	Qualitative and Quantitative Assessments of Cardiac Sarcoidosis Using ¹⁸ F-FDG PET. Annals of Nuclear Cardiology, 2017, 3, 117-120.	0.2	12
43	Reduced oxidative metabolic response in dysfunctional myocardium with preserved glucose metabolism but with impaired contractile reserve. Journal of Nuclear Medicine, 2004, 45, 1885-91.	5.0	12
44	Coronary vasomotor function assessed by positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1213-1224.	6.4	11
45	Improved spillover correction model to quantify myocardial blood flow by 11C-acetate PET: comparison with 15O-H2O PET. Annals of Nuclear Medicine, 2015, 29, 15-20.	2.2	11
46	Early therapeutic effects of adaptive servo-ventilation on cardiac sympathetic nervous function in patients with heart failure evaluated using a combination of 11C-HED PET and 123I-MIBG SPECT. Journal of Nuclear Cardiology, 2019, 26, 1079-1089.	2.1	9
47	Cardiac Sympathetic Nervous System Imaging with ¹²³ I-meta-iodobenzylguanidine. Annals of Nuclear Cardiology, 2017, 3, 4-11.	0.2	8
48	Time to Move on to the Next Stage and Open our Door to the World. Annals of Nuclear Cardiology, 2015, 1, 1-2.	0.2	8
49	Current Clinical Practice of Nuclear Cardiology in Japan. Annals of Nuclear Cardiology, 2016, 2, 50-52.	0.2	8
50	Feasibility of Quantifying Myocardial Blood Flow with a Shorter Acquisition Time Using ¹⁵ O-H ₂ O PET. Annals of Nuclear Cardiology, 2016, 2, 30-37.	0.2	6
51	Accelerated 99mTc-sestamibi clearance associated with mitochondrial dysfunction and regional left ventricular dysfunction in reperfused myocardium in patients with acute coronary syndrome. EJNMMI Research, 2016, 6, 41.	2.5	5
52	Perspectives of quantitative assessment of myocardial blood flow. Clinical and Translational Imaging, 2018, 6, 321-327.	2.1	5
53	¹⁵ O-labeled Water is the Best Myocardial Blood Flow Tracer for Precise MBF Quantification. Annals of Nuclear Cardiology, 2019, 5, 69-72.	0.2	5
54	Clinical Application of ¹⁸ F-fluorodeoxyglucose PET and LGE CMR in Cardiac Sarcoidosis. Annals of Nuclear Cardiology, 2017, 3, 125-130.	0.2	5

#	Article	IF	CITATIONS
55	How Do We Establish Cardiac Sympathetic Nervous System Imaging with ¹²³ I- <i>m</i> IBC in Clinical Practice? Perspectives and Lessons from Japan and the US. Annals of Nuclear Cardiology, 2019, 5, 5-20.	0.2	5
56	Comprehensive assessment of impaired peripheral and coronary artery endothelial functions in smokers using brachial artery ultrasound and oxygen-15-labeled water PET. Journal of Cardiology, 2016, 68, 316-323.	1.9	4
57	Focus Issue: Cardiac Sympathetic Nervous System Imaging from JSNC/ASNC Joint Session in 26 th JSNC Annual Scientific Meeting. Annals of Nuclear Cardiology, 2016, 2, 136-137.	0.2	4
58	Updated Japanese Ministry of Health, Labour and Welfare Reimbursement Policy for Cardiac Positron Emission Tomography and Coronary Intervention. Annals of Nuclear Cardiology, 2018, 4, 42-45.	0.2	4
59	Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis, 2021, 337, 7-17.	0.8	4
60	Anatomical and Functional Estimations of Brachial Artery Diameter and Elasticity Using Oscillometric Measurements with a Quantitative Approach. Pulse, 2016, 4, 1-10.	1.9	3
61	Improving the worldwide quality of nuclear cardiology practice and research: The role of the official journal. Journal of Nuclear Cardiology, 2017, 24, 335-337.	2.1	3
62	Statement on ¹⁸ F-FDG PET Usage for Large-vessel Vasculitis. Annals of Nuclear Cardiology, 2018, 4, 46-51.	0.2	3
63	Effects of Repeated 131I-Meta-Iodobenzylguanidine Radiotherapy on Tumor Size and Tumor Metabolic Activity in Patients with Metastatic Neuroendocrine Tumors. Journal of Nuclear Medicine, 2021, 62, 685-694.	5.0	3
64	Recommendations for ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography Imaging for Diagnosis of Cardiac Sarcoidosis—2018 Update. Annals of Nuclear Cardiology, 2019, 5, 141-159.	0.2	2
65	Has ANC Had an Impact on Clinical Science? Yes, We Have. Annals of Nuclear Cardiology, 2016, 2, 1-2.	0.2	2
66	Roles of ¹⁸ F-FDG PET in Diagnosis and Management of Cardiac Sarcoidosis—from the Continuing Medical Education Session at the 63 rd SNMMI Meeting, June 2016. Annals of Nuclear Cardiology, 2017, 3, 110-112.	0.2	2
67	Focus Issue: Cardiac Sympathetic Nervous System Imaging from JSNC/ASNC Joint Session in 26 th JSNC Annual Scientific Meeting. Annals of Nuclear Cardiology, 2016, 2, 136-137.	0.2	2
68	Validation of regional myocardial blood flow quantification using three-dimensional PET with rubidium-82: repeatability and comparison with two-dimensional PET data acquisition. Nuclear Medicine Communications, 2020, 41, 768-775.	1.1	1
69	Positron Emission Tomography Myocardial Perfusion Imaging Tracer Choice for Assessment of Myocardial Blood Flow. Annals of Nuclear Cardiology, 2019, 5, 50-52.	0.2	1
70	ANC Opens up to the World. Annals of Nuclear Cardiology, 2020, 6, 1-4.	0.2	1
71	Has ANC Had an Impact on Clinical Science? Yes, We Have. Annals of Nuclear Cardiology, 2016, 2, 1-2.	0.2	1
72	It is a Tiny Step, But We Are on the Path to Meeting and Surpassing Our Initial Target. Annals of Nuclear Cardiology, 2017, 3, 1-3.	0.2	0

KEIICHIRO YOSHINAGA

#	Article	IF	CITATIONS
73	Ventricular phase analysis moves on to the next phase: What technologists should keep in mind. Journal of Nuclear Cardiology, 2021, 28, 1172-1174.	2.1	О
74	¹⁸ F-FDG PET Viability Assessment for the Improvements of Prognosis of the Patients with Left Ventricular Dysfunction. Annals of Nuclear Cardiology, 2016, 2, 53-55.	0.2	0
75	Introduction of the JSNC Award. Annals of Nuclear Cardiology, 2016, 2, 183-185.	0.2	Ο
76	Recent Research Topics in Nuclear Cardiology from the YIA Session of JSNC 2015. Annals of Nuclear Cardiology, 2016, 2, 186-187.	0.2	0
77	Latest Research Topics from the Young Investigator Award Session at the 2016 Japanese Society of Nuclear Cardiology, 2017, 3, 210-212.	0.2	Ο
78	Challenges and Opportunities in Nuclear Cardiology from Latin American and Asian Perspectives. Annals of Nuclear Cardiology, 2017, 3, 173-175.	0.2	0
79	Focus Issue: Clinical Application of Myocardial Blood Flow Quantificationï¼from the JSNC/ASNC Joint Session at the 27 th JSNC Annual Scientific Meeting. Annals of Nuclear Cardiology, 2017, 3, 155-156.	0.2	Ο
80	Art and Science. Annals of Nuclear Cardiology, 2018, 4, 1-4.	0.2	0
81	Plaque Imaging Using Coronary Computed Tomography Angiography. Annals of Nuclear Cardiology, 2018, 4, 132-136.	0.2	Ο
82	Clinical Studies Using <i>in Vivo</i> Diagnostic Radiopharmaceuticals under the Clinical Research Law. Annals of Nuclear Cardiology, 2018, 4, 88-93.	0.2	0
83	Increasing the Presence of ANC among Academia. Annals of Nuclear Cardiology, 2019, 5, 1-4.	0.2	Ο
84	Introduction of the JSNC Award. Annals of Nuclear Cardiology, 2016, 2, 183-185.	0.2	0
85	Recent Research Topics in Nuclear Cardiology from the YIA Session of JSNC 2015. Annals of Nuclear Cardiology, 2016, 2, 186-187.	0.2	0
86	¹⁸ F-FDG PET Viability Assessment for the Improvements of Prognosis of the Patients with Left Ventricular Dysfunction. Annals of Nuclear Cardiology, 2016, 2, 53-55.	0.2	0