Heriberto Pfeiffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D porous Ca-modified Mg-Zr mixed metal oxide for fluoride adsorption. Chemical Engineering Journal, 2022, 428, 131371.	6.6	52
2	Unraveling the CO and CO2 reactivity on Li2MnO3: Sorption and catalytic analyses. Chemical Engineering Journal, 2022, 428, 131998.	6.6	13
3	Experimental and theoretical analysis revealing the underlying chemistry accounting for the heterogeneous transesterification reaction in Na2SiO3 and Li2SiO3 catalysts. Renewable Energy, 2022, 184, 845-856.	4.3	6
4	A new kinetic model for CO2 capture on sodium zirconate (Na2ZrO3): An analysis under different flow rates. Journal of CO2 Utilization, 2022, 56, 101862.	3.3	6
5	Highly efficient CO2 permeation using a new dense dual-phase ceramic membrane prepared with Ce0.8Sm0.2O2â~δ–Pr0.6Sr0.4FeO3â~Ĩ´ as precursors. Bulletin of Materials Science, 2022, 45, 1.	0.8	1
6	LaNiO3 Perovskite Synthesis through the EDTA–Citrate Complexing Method and Its Application to CO Oxidation. Catalysts, 2022, 12, 57.	1.6	7
7	Introduction to CO ₂ capture, utilization and storage (CCUS). Reaction Chemistry and Engineering, 2022, 7, 487-489.	1.9	8
8	Enhanced CO2 capture over Li-containing β-NaFeO2 materials: Effect of lithium nitrate addition. Fuel, 2022, 324, 124605.	3.4	4
9	Investigation of H2 production via an integrated pathway of consecutive CO oxidation and dry methane reforming in the presence of Co3O4@HNTs catalyst. Applied Nanoscience (Switzerland), 2022, 12, 2459-2476.	1.6	1
10	High-temperature CO ₂ perm-selectivity of yttrium-doped SDC ceramic–carbonate dual-phase membranes. Reaction Chemistry and Engineering, 2021, 6, 321-334.	1.9	2
11	Lithium cuprate, a multifunctional material for NO selective catalytic reduction by CO with subsequent carbon oxide capture at moderate temperatures. Reaction Chemistry and Engineering, 2021, 6, 2400-2410.	1.9	4
12	Understanding the CO2 chemical reaction path on Li6ZnO4, a new possible high temperature CO2 captor. Chemical Engineering Journal, 2021, 417, 129205.	6.6	14
13	Mixed ionic-electronic conducting composite-based ceramic-carbonate dense membranes for CO2/O2 counter-permeation and CO oxidation. Chemical Engineering Science, 2021, 246, 117000.	1.9	1
14	CO2–CO capture and kinetic analyses of sodium cobaltate under various partial pressures. Adsorption, 2020, 26, 781-792.	1.4	2
15	High and efficient carbon dioxide chemisorption on a new high lithium-content ceramic; hexalithium cobaltate (Li6CoO4). Chemical Engineering Journal, 2020, 384, 123291.	6.6	19
16	First insights for hydrogen production using an alkaline ceramic through the water-gas shift reaction. Chemical Engineering Journal, 2020, 392, 123740.	6.6	8
17	The role of nickel addition on the CO2 chemisorption enhancement in Ni-containing Li2CuO2: Analysis of the cyclability and different CO2 partial pressure performance. Fuel, 2020, 277, 118185.	3.4	12
18	First discernments for NO storage and reduction (NSR) on lithium cuprate (Li2CuO2) at moderate temperatures (100â€^â‰ å €T ≤400â€ [−] °C). Applied Catalysis B: Environmental, 2020, 275, 119119.	10.8	6

#	Article	IF	CITATIONS
19	Developing new alkaline ceramics as possible CO2 chemisorbents at high temperatures: The lithium and sodium yttriates (LiYO2 and NaYO2) cases. Chemical Engineering Journal, 2020, 396, 125277.	6.6	8
20	New Catalytic and Sorption Bifunctional Li ₆ CoO ₄ Material for Carbon Monoxide Oxidation and Subsequent Chemisorption. Industrial & Engineering Chemistry Research, 2020, 59, 10823-10831.	1.8	6
21	Development of novel nano-hydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation. Chemical Engineering Journal, 2020, 401, 125992.	6.6	18
22	Evaluation of Me-Li ₂ CuO ₂ Solid Solutions (Where Me = Ni, Fe, and Mn) during CO ₂ and CO Chemisorption. Journal of Physical Chemistry C, 2020, 124, 16019-16031.	1.5	11
23	Unraveling the effects on lithium-ion cathode performance by cation doping M–Li ₂ CuO ₂ solid solution samples (M = Mn, Fe and Ni). Dalton Transactions, 2020, 49, 4549-4558.	1.6	13
24	Enhancing CO2 chemisorption on lithium cuprate (Li2CuO2) at moderate temperatures and different pressures by alkaline nitrate addition. Physical Chemistry Chemical Physics, 2020, 22, 2803-2813.	1.3	10
25	Two-dimensional MnFeCo layered double oxide as catalyst for enhanced selective catalytic reduction of NOx with NH3 at low temperature (25–150 °C). Applied Catalysis A: General, 2020, 592, 117432.	2.2	25
26	Enhanced selective catalytic reduction of NO with CO over Cu/C nanoparticles synthetized from a Cu-benzene-1,3,5-tricarboxylate metal organic framework by a continuous spray drying process. Chemical Engineering Journal, 2020, 388, 124270.	6.6	25
27	Co3O4 nanostructures and Co3O4 supported on halloysite nanotubes: New highly active and thermally stable feasible catalysts for CO oxidation. Applied Clay Science, 2020, 190, 105590.	2.6	19
28	New evidences in CO oxidation and selective chemisorption of carbon oxides on different alkaline ferrite crystal phases (NaFeO2 and LiFeO2). Fuel Processing Technology, 2020, 204, 106404.	3.7	17
29	CO ₂ —H ₂ O Capture and Cyclability on Sodium Cobaltate at Low Temperatures (30–80°C): Experimental and Theoretical Analysis. Energy Technology, 2019, 7, 1800527.	1.8	4
30	Evaluation of Fe-containing Li2CuO2 on CO2 capture performed at different physicochemical conditions. Environmental Science and Pollution Research, 2019, 26, 29532-29543.	2.7	4
31	COx-free hydrogen production from ammonia on novel cobalt catalysts supported on 1D titanate nanotubes. International Journal of Hydrogen Energy, 2019, 44, 30062-30074.	3.8	38
32	Thermokinetic evaluation of iron addition on lithium metazirconate (Fe-Li2ZrO3) for enhancing carbon dioxide capture at high temperatures. Thermochimica Acta, 2019, 673, 129-137.	1.2	12
33	Development of New Bifunctional Dense Ceramic-Carbonate Membrane Reactors for Gas Mixtures Separation, through CO Oxidation and Subsequent CO2 Permeation. ACS Applied Energy Materials, 2019, 2, 1380-1387.	2.5	9
34	Synthesis of Li _{4+x} Si _{1â^'x} Fe _x O ₄ solid solution by dry ball milling and its highly efficient CO ₂ chemisorption in a wide temperature range and low CO ₂ concentrations. Journal of Materials Chemistry A, 2019, 7, 4153-4164.	5.2	26
35	Pentalithium Ferrite (Li5FeO4) as Highly Active Material for Hydrogen Production in the Chemical Looping Partial Oxidation of Methane. Topics in Catalysis, 2019, 62, 884-893.	1.3	7
36	High and Efficient CO ₂ Capture in Molten Nitrate-Modified Mg–Al–Palmitate Layered Double Oxides at High Pressures and Elucidation of Carbonation Mechanisms by in Situ DRIFT Spectroscopy Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 5501-5509.	1.8	21

#	Article	IF	CITATIONS
37	Recent advances in lithium containing ceramic based sorbents for high-temperature CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 7962-8005.	5.2	106
38	Nanosized Lithium Aluminate (γ-LiAlO2) Synthesized by EDTA-citrate Complexing Method, Using Different Thermal Conditions. Journal of the Mexican Chemical Society, 2019, 63, .	0.2	5
39	Structural evolution and reaction mechanism of lithium nickelate (LiNiO2) during the carbonation reaction. Journal of Materiomics, 2018, 4, 56-61.	2.8	5
40	Thermocatalytic analysis of CO 2 -CO selective chemisorption mechanism on lithium cuprate (Li 2 CuO) Tj ETQo	0 0 0 rgBT 1.2 סנ	Överlock 10
41	Enhanced CO 2 capture capacity on open-cell Mg foams via humid impregnation with lithium at low temperatures. Thermochimica Acta, 2018, 664, 73-80.	1.2	3
42	Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547, 11-18.	4.1	34
43	Nickel-doped sodium zirconate catalysts for carbon dioxide storage and hydrogen production through dry methane reforming process. Applied Catalysis B: Environmental, 2018, 224, 80-87.	10.8	29
44	CO2 chemisorption enhancement produced by K2CO3- and Na2CO3-addition on Li2CuO2. Journal of CO2 Utilization, 2018, 23, 143-151.	3.3	25
45	Synthesis of gamma radiation-induced PEGylated cisplatin for cancer treatment. RSC Advances, 2018, 8, 34718-34725.	1.7	6
46	CO ₂ Separation Improvement Produced on a Ceramic–Carbonate Dense Membrane Superficially Modified with Au–Pd. Industrial & Engineering Chemistry Research, 2018, 57, 9261-9268.	1.8	17
47	Alkaline zirconates as effective materials for hydrogen production through consecutive carbon dioxide capture and conversion in methane dry reforming. Applied Catalysis B: Environmental, 2018, 238, 576-585.	10.8	26
48	Effect of Chemical Composition and Crystal Phase of (Li,Na)FeO ₂ Ferrites on CO ₂ Capture Properties at High Temperatures. Journal of Physical Chemistry C, 2018, 122, 21162-21171.	1.5	17
49	Enhanced CO2 chemisorption at high temperatures via oxygen addition using (Fe, Cu or Ni)-containing sodium cobaltates as solid sorbents. Journal of CO2 Utilization, 2018, 25, 147-157.	3.3	14
50	Analysis of the CO ₂ Chemisorption in Li ₅ FeO ₄ , a New High Temperature CO ₂ Captor Material. Effect of the CO ₂ and O ₂ Partial Pressures. Journal of Physical Chemistry C, 2017, 121, 3455-3462.	1.5	46
51	Ce _{0.8} Sm _{0.15} Sr _{0.05} O ₂ as Possible Oxidation Catalyst and Assessment of the CaO Addition in the Coupled CO Oxidation–CO ₂ Capture Process. Industrial & Engineering Chemistry Research, 2017, 56, 6124-6130.	1.8	6
52	Thermokinetic and conductivity analyzes of the high CO2 chemisorption on Li5AlO4 and alkaline carbonate impregnated Li5AlO4 samples: Effects produced by the use of CO2 partial pressures and oxygen addition. Journal of Energy Chemistry, 2017, 26, 919-926.	7.1	18
53	Synthesis and evaluation as CO2 chemisorbent of the Li5(Al1â^'Fe)O4 solid solution materials: Effect of oxygen addition. Journal of Energy Chemistry, 2017, 26, 948-955.	7.1	13
54	Bifunctional application of lithium ferrites (Li 5 FeO 4 and LiFeO 2) during carbon monoxide (CO) oxidation and chemisorption processes. A catalytic, thermogravimetric and theoretical analysis. Chemical Engineering Journal, 2017, 327, 783-791.	6.6	33

#	Article	IF	CITATIONS
55	NiO CaO materials as promising catalysts for hydrogen production through carbon dioxide capture and subsequent dry methane reforming. Journal of Energy Chemistry, 2017, 26, 942-947.	7.1	35
56	High and efficient Li2CuO2-CO2 chemisorption using different partial pressures and enhancement produced by the oxygen addition. Chemical Engineering Journal, 2017, 313, 1288-1294.	6.6	34
57	Thermogravimetric study of sequential carbonation and decarbonation processes over Na ₂ ZrO ₃ at low temperatures (30–80 °C): relative humidity effect. RSC Advances, 2016, 6, 66579-66588.	1.7	15
58	CO2 adsorption at high pressures in MCM-41 and derived alkali-containing samples: the role of the textural properties and chemical affinity. Journal of Porous Materials, 2016, 23, 1155-1162.	1.3	4
59	CO Oxidation and Subsequent CO ₂ Chemisorption on Alkaline Zirconates: Li ₂ ZrO ₃ and Na ₂ ZrO ₃ . Industrial & Engineering Chemistry Research, 2016, 55, 9880-9886.	1.8	40
60	Structural and CO ₂ capture analyses of the Li _{1+x} FeO ₂ (0 ≤ ≤0.3) system: effect of different physicochemical conditions. RSC Advances, 2016, 6, 112040-112049.	1.7	26
61	Methane Reforming Process by means of a Carbonated Na ₂ ZrO ₃ Catalyst. Chemistry Letters, 2016, 45, 685-687.	0.7	12
62	CO ₂ capture enhancement in InOF-1 via the bottleneck effect of confined ethanol. Chemical Communications, 2016, 52, 10273-10276.	2.2	48
63	Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 445-455.	0.8	8
64	First assessment of Li 2 O–Bi 2 O 3 ceramic oxides for high temperature carbon dioxide capture. Journal of Energy Chemistry, 2016, 25, 754-760.	7.1	10
65	CO ₂ chemisorption in Li ₂ CuO ₂ microstructurally modified by ball milling: study performed with different physicochemical CO ₂ capture conditions. RSC Advances, 2016, 6, 57880-57888.	1.7	26
66	CO Chemical Capture on Lithium Cuprate, Through a Consecutive CO Oxidation and Chemisorption Bifunctional Process. Journal of Physical Chemistry C, 2016, 120, 3798-3806.	1.5	29
67	Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst. Renewable Energy, 2016, 93, 323-331.	4.3	74
68	Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO ₂ chemisorption processes. RSC Advances, 2016, 6, 2162-2170.	1.7	27
69	Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption properties. Particuology, 2016, 24, 129-137.	2.0	16
70	CO2 Chemisorption on Li5AlO4: Effects of Sodium and Potassium Carbonate Addition. Materials Research Society Symposia Proceedings, 2015, 1765, 109-114.	0.1	0
71	Development of pure Mg open-cell foams as structured CO2 captor. Thermochimica Acta, 2015, 621, 74-80.	1.2	5
72	Evidence of CO Oxidation–Chemisorption Process on Sodium Zirconate (Na2ZrO3). Chemistry Letters, 2015, 44, 480-482.	0.7	14

#	Article	IF	CITATIONS
73	CO ₂ chemisorption and cyclability analyses in αâ^'Li ₅ AlO ₄ : effects of Na ₂ CO ₃ and K ₂ CO ₃ addition. , 2015, 5, 802-811.		15
74	Water steam effect during high CO ₂ chemisorption in lithium cuprate (Li ₂ CuO ₂) at moderate temperatures: experimental and theoretical evidence. RSC Advances, 2015, 5, 34157-34165.	1.7	29
75	Separation of CO ₂ from CH ₄ and CO ₂ capture in the presence of water vapour in NOTT-400. New Journal of Chemistry, 2015, 39, 2400-2403.	1.4	38
76	Synthesis and characterisation of K ₂ [LnTa ₃ O ₁₀]Â <i>n</i> H ₂ O (Ln = La, Pr, Nd): cation-deficient layered perovskite tantalates for water photolysis. Canadian Journal of Chemistry, 2015, 93, 550-557.	0.6	3
77	Analysis of the CO ₂ –H ₂ O Chemisorption in Lithium Silicates at Low Temperatures (30–80 °C). Industrial & Engineering Chemistry Research, 2015, 54, 6884-6892.	1.8	15
78	CO2 chemisorption and evidence of the CO oxidation–chemisorption mechanisms on sodium cobaltate. Chemical Engineering Journal, 2015, 271, 106-113.	6.6	22
79	Electronic Structure, Phonon Dynamical Properties, andCO2Capture Capability ofNa2â^xMxZrO3(M=Li,K): Density-Functional Calculations and Experimental Validations. Physical Review Applied, 2015, 3, .	1.5	20
80	Changes in the characteristics of acid-treated clay after the inclusion of proteins. Surface and Interface Analysis, 2015, 47, 135-141.	0.8	7
81	Potassium-based sorbents using mesostructured γ-alumina supports for low temperature CO2 capture. Ceramics International, 2015, 41, 3036-3044.	2.3	15
82	The effects of high-pressure on the chemisorption process of CO2 on lithium oxosilicate (Li8SiO6). Chemical Engineering Journal, 2015, 264, 10-15.	6.6	25
83	Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties. Beilstein Journal of Nanotechnology, 2014, 5, 1226-1234.	1.5	16
84	Hierarchical Na-doped cubic ZrO2 synthesis by a simple hydrothermal route and its application in biodiesel production. Journal of Solid State Chemistry, 2014, 218, 213-220.	1.4	19
85	Influence of the Kâ€, Na―and Kâ€Naâ€carbonate additions during the CO ₂ chemisorption on lithium oxosilicate (Li ₈ SiO ₆). , 2014, 4, 145-154.		20
86	Thermoanalytical study of acid-treated clay containing amino acid immobilized on its surface. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1359-1369.	2.0	6
87	Sodium zirconate (Na2ZrO3) as a catalyst in a soybean oil transesterification reaction for biodiesel production. Fuel Processing Technology, 2014, 120, 34-39.	3.7	64
88	Structural and Ionic Conduction Analyses of the Na ₂ (Zr _{1–<i>x</i>} Al _{<i>x</i>})O _{3–<i>x</i>/2} Solid Solution, During the CO ₂ Chemisorption Process. Journal of Physical Chemistry C, 2014, 118, 26212-26218.	1.5	6
89	Thermodynamic and Kinetic Analyses of the CO ₂ Chemisorption Mechanism on Na ₂ TiO ₃ : Experimental and Theoretical Evidences. Journal of Physical Chemistry C, 2014, 118, 19822-19832.	1.5	37
90	CO2 Adsorption at Elevated Pressure and Temperature on Mg–Al Layered Double Hydroxide. Industrial & Engineering Chemistry Research, 2014, 53, 8087-8094.	1.8	27

#	Article	IF	CITATIONS
91	Some consequences of the fluorination of brucite-like layers in layered double hydroxides: Adsorption. Applied Clay Science, 2014, 88-89, 26-32.	2.6	14
92	CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach. Physical Chemistry Chemical Physics, 2013, 15, 13538.	1.3	100
93	Thermogravimetric analysis of the water vapor addition during the CaO carbonation process at moderate temperatures (40–70°C). Journal of Thermal Analysis and Calorimetry, 2013, 111, 1385-1390.	2.0	3
94	Cyclic CO2 chemisorption–desorption behavior of Na2ZrO3: Structural, microstructural and kinetic variations produced as a function of temperature. Journal of Solid State Chemistry, 2013, 204, 298-304.	1.4	32
95	Microstructural and CO2 chemisorption analyses of Li4SiO4: Effect of surface modification by the ball milling process. Thermochimica Acta, 2013, 567, 118-124.	1.2	93
96	Dynamic water vapor sorption on Mg(Ga3+)O mixed oxides: Analysis of the LDH thermal regeneration process. Thermochimica Acta, 2013, 553, 49-53.	1.2	4
97	High CO ₂ Capture in Sodium Metasilicate (Na ₂ SiO ₃) at Low Temperatures (30–60 °C) through the CO ₂ –H ₂ O Chemisorption Process. Journal of Physical Chemistry C, 2013, 117, 13452-13461.	1.5	38
98	Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for high-temperature CO2 capture. Journal of Materials Chemistry A, 2013, 1, 3919.	5.2	69
99	Thermokinetic and microstructural analyses of the CO2 chemisorption on K2CO3–Na2ZrO3. Journal of CO2 Utilization, 2013, 3-4, 14-20.	3.3	17
100	Structural and CO ₂ Chemisorption Analyses on Na ₂ (Zr _{1–<i>x</i>} Al _{<i>x</i>})O ₃ Solid Solutions. Journal of Physical Chemistry C, 2013, 117, 16483-16491.	1.5	27
101	Li _{4+<i>x</i>} (Si _{1–<i>x</i>} Al _{<i>x</i>})O ₄ Solid Solution Mechanosynthesis and Kinetic Analysis of the CO ₂ Chemisorption Process. Journal of Physical Chemistry C, 2013, 117, 6303-6311.	1.5	52
102	Inactivation of Ascaris eggs in water using hydrogen peroxide and a Fenton type nanocatalyst (FeOx/C) synthesized by a novel hybrid production process. Journal of Water and Health, 2013, 11, 419-429.	1.1	7
103	αÂ→Âγ Lithium borate phase transition produced during the CO2 chemisorption process. Journal of Thermal Analysis and Calorimetry, 2012, 110, 807-811.	2.0	15
104	Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods. Journal of Advanced Ceramics, 2012, 1, 204-220.	8.9	55
105	CO ₂ Chemisorption and Cyclability Analyses of Lithium Aluminate Polymorphs (α- and) Tj ETQq1 1	0.784314 1.8	rgBT /Overl
106	Structural and Thermochemical Chemisorption of CO ₂ on Li _{4+<i>x</i>} (Si _{1–<i>x</i>} Al _{<i>x</i>})O ₄ and Li _{4–<i>x</i>} (Si _{1–<i>x</i>} V _{<i>x</i>})O ₄ Solid Solutions. Journal of Physical Chemistry A, 2012, 116, 3163-3171.	1.1	67
107	High CO ₂ Chemisorption in α-Li ₅ AlO ₄ at Low Temperatures (30–80) 1	j ETQq1 1 2.5	0.784314
108	Microstructural Thermal Evolution of the Na ₂ CO ₃ Phase Produced during a Na ₂ ZrO ₃ –CO ₂ Chemisorption Process. Journal of Physical Chemistry C, 2012, 116, 9675-9680.	1.5	62

#	Article	IF	CITATIONS
109	Synthesis of aluminosilicates under high pressure and using sulfur as directing agent. Open Chemistry, 2012, 10, 105-112.	1.0	6
110	Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis. Journal of Thermal Analysis and Calorimetry, 2012, 108, 647-655.	2.0	77
111	Electrochemical Behavior of (Zn, Mn)-Al Nitrated Hydrotalcites. Journal of New Materials for Electrochemical Systems, 2012, 15, 301-306.	0.3	2
112	CO ₂ Capture at Low Temperatures (30–80 °C) and in the Presence of Water Vapor over a Thermally Activated Mg–Al Layered Double Hydroxide. Journal of Physical Chemistry A, 2011, 115, 12243-12250.	1.1	25
113	Analysis of the CO2 capture in sodium zirconate (Na2ZrO3). Effect of the water vapor addition. International Journal of Greenhouse Gas Control, 2011, 5, 1624-1629.	2.3	47
114	Evidence of CO2 Chemisorption at High Temperature in Lithium Gallate (Li5GaO4). Chemistry Letters, 2011, 40, 504-505.	0.7	7
115	Structure, thermal stability, and catalytic performance of MgO-ZrO2 composites. Journal of Structural Chemistry, 2011, 52, 340-349.	0.3	3
116	Thermal analysis of the Mg(OH)2 dehydroxylation process at high pressures. Thermochimica Acta, 2011, 525, 180-182.	1.2	10
117	Cyanoethylation of alcohols by activated Mg–Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Brönsted basicity. Journal of Catalysis, 2011, 279, 196-204.	3.1	73
118	Thermokinetic analysis of the MgO surface carbonation process in the presence of water vapor. Thermochimica Acta, 2011, 516, 74-78.	1.2	19
119	Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: (I) Synthesis, structural and microstructural characterization. Journal of Solid State Chemistry, 2011, 184, 1304-1311.	1.4	22
120	Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: Il—Textural analysis and CO2–H2O sorption evaluation. Journal of Solid State Chemistry, 2011, 184, 2257-2262.	1.4	35
121	Towards understanding the thermoanalysis of water sorption on lithium orthosilicate (Li4SiO4). Thermochimica Acta, 2011, 515, 73-78.	1.2	48
122	Thermochemical and Cyclability Analyses of the CO2 Absorption Process on a Ca/Al Layered Double Hydroxide. Journal of Environmental Engineering, ASCE, 2011, 137, 1058-1065.	0.7	15
123	Advances on Alkaline Ceramics as Possible CO ₂ Captors. ACS Symposium Series, 2010, , 233-253.	0.5	12
124	Oxygen Absorption in Free-Standing Porous Silicon: A Structural, Optical and Kinetic Analysis. Nanoscale Research Letters, 2010, 5, 686-691.	3.1	32
125	Toward Understanding the Effect of Water Sorption on Lithium Zirconate (Li ₂ ZrO ₃) during Its Carbonation Process at Low Temperatures. Journal of Physical Chemistry C, 2010, 114, 9453-9458.	1.5	32
126	Effect of Oxygen Addition on the Thermokinetic Properties of CO ₂ Chemisorption on Li ₂ ZrO ₃ . Industrial & Engineering Chemistry Research, 2010, 49, 9038-9042.	1.8	36

#	Article	IF	CITATIONS
127	Influence of Mg/Al Ratio on the Thermokinetic Rehydration of Calcined Mgâ^'Al Layered Double Hydroxides. Journal of Physical Chemistry C, 2010, 114, 8485-8492.	1.5	22
128	Thermokinetic Analysis of the CO ₂ Chemisorption on Li ₄ SiO ₄ by Using Different Gas Flow Rates and Particle Sizes. Journal of Physical Chemistry A, 2010, 114, 4535-4541.	1.1	135
129	Thermokinetic Study of the Rehydration Process of a Calcined MgAl-Layered Double Hydroxide. Langmuir, 2010, 26, 4074-4079.	1.6	38
130	Influence of copper on the microstructure of sol–gel titanium oxide nanotubes array. Journal of Materials Science, 2009, 44, 4162-4168.	1.7	10
131	Synthesis of macroporous ZrO2–Al2O3 mixed oxides with mesoporous walls, using polystyrene spheres as template. Journal of Porous Materials, 2009, 16, 473-479.	1.3	22
132	Structural Analysis and CO ₂ Chemisorption Study on Nonstoichiometric Lithium Cuprates (Li _{2+<i>x</i>} CuO _{2+<i>x</i>/2}). Journal of Physical Chemistry A, 2009, 113, 193-198.	1.1	40
133	Thermochemical Capture of Carbon Dioxide on Lithium Aluminates (LiAlO ₂ and) Tj ETQq1 1 0.7843 Physical Chemistry A, 2009, 113, 6919-6923.	14 rgBT /C 1.1	overlock 10 T 120
134	Iba of Zeolites Exchanged with Lithium for Co[sub 2] Retention. , 2009, , .		0
135	Fe-ZSM-5 Catalysts: Preparation in Organic Media, Fe-particle Morphology and NO x Reduction Activity. Catalysis Letters, 2008, 120, 244-251.	1.4	20
136	Sodium metasilicate (Na2SiO3): A thermo-kinetic analysis of its CO2 chemical sorption. Thermochimica Acta, 2008, 473, 92-95.	1.2	51
137	Textural, Structural, and CO ₂ Chemisorption Effects Produced on the Lithium Orthosilicate by Its Doping with Sodium (Li _{4â^²<i>x</i>} Na _{<i>x</i>} SiO ₄). Chemistry of Materials, 2008, 20, 7171-7176.	3.2	132
138	CO ₂ Absorption on Na ₂ ZrO ₃ :  A Kinetic Analysis of the Chemisorption and Diffusion Processes. Journal of Physical Chemistry C, 2008, 112, 6520-6525.	1.5	102
139	Low Temperature Synthesis of Li2SiO3: Effect on Its Morphological and Textural Properties. Research Letters in Materials Science, 2008, 2008, 1-4.	0.2	12
140	Lithium Cuprate (Li2CuO2): A New Possible Ceramic Material for CO2 Chemisorption. Chemistry Letters, 2008, 37, 862-863.	0.7	66
141	Kinetic and Reaction Mechanism of CO2Sorption on Li4SiO4:Â Study of the Particle Size Effect. Industrial & Engineering Chemistry Research, 2007, 46, 2407-2412.	1.8	207
142	Thermal Behavior and CO2Absorption of Li2-xNaxZrO3Solid Solutions. Chemistry of Materials, 2007, 19, 922-926.	3.2	86
143	Synthesis and CO2 capture evaluation of Li2â^'xKxZrO3 solid solutions and crystal structure of a new lithium–potassium zirconate phase. Journal of Solid State Chemistry, 2007, 180, 2485-2492.	1.4	56
144	Microstructural Development of ZnO Pellets Doped with Different Vanadium Oxides (V ₂ O ₅ and V ₂ O ₃). International Journal of Applied Ceramic Technology, 2007, 4, 564-570.	1.1	4

#	Article	IF	CITATIONS
145	Carbonate phobic (Zn,Mn)-Al hydrotalcite-like compounds. Solid State Sciences, 2007, 9, 394-403.	1.5	24
146	Lithiumâ^'Sodium Metazirconate Solid Solutions, Li2-xNaxZrO3(0 ≤≤2): A Hierarchical Architecture. Chemistry of Materials, 2006, 18, 2642-2647.	3.2	48
147	Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). Chemistry of Materials, 2006, 18, 2307-2310.	3.2	165
148	Cr(VI) immobilization in mixed (Mg,Al) oxides. Microporous and Mesoporous Materials, 2006, 94, 234-242.	2.2	19
149	Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3). Journal of Solid State Chemistry, 2006, 179, 909-916.	1.4	103
150	Synthesis of Li2MO3 (M=Ti or Zr) by the combustion method. Solid State Sciences, 2006, 8, 470-475.	1.5	33
151	Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: a probable anode for lithium ion batteries. Electrochimica Acta, 2005, 50, 4763-4770.	2.6	61
152	Synthesis, characterization and thermal stability of Ni3P coatings on nickel. Materials Chemistry and Physics, 2005, 92, 534-539.	2.0	23
153	Thermal Stability and High-Temperature Carbon Dioxide Sorption on Hexa-lithium Zirconate (Li6Zr2O7). Chemistry of Materials, 2005, 17, 1704-1710.	3.2	118
154	Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO-rich MnO2–V2O5–ZnO varistors. Journal of the European Ceramic Society, 2004, 24, 1199-1203.	2.8	25
155	Reaction mechanisms and kinetics of the synthesis and decomposition of lithium metazirconate through solid-state reaction. Journal of the European Ceramic Society, 2004, 24, 2433-2443.	2.8	41
156	Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances. Journal of Power Sources, 2004, 136, 80-87.	4.0	84
157	Air stable copper phosphide (Cu3P): a possible negative electrode material for lithium batteries. Electrochemistry Communications, 2004, 6, 263-267.	2.3	101
158	Zr alkoxide chain effect on the sol–gel synthesis of lithium metazirconate. Materials Chemistry and Physics, 2003, 78, 558-561.	2.0	5
159	Radiation damage and tritium release from Li–Zr–Si oxides. Solid State Sciences, 2002, 4, 535-540.	1.5	1
160	Phase transformations on lithium silicates under irradiation. Materials Letters, 2001, 50, 36-40.	1.3	10
161	Lithium and tritium diffusion in lithium oxide (Li2O), a molecular dynamics simulation. Journal of Nuclear Materials, 2000, 280, 295-303.	1.3	17
162	Sol-gel Synthesis of Li–ZrSiO4. Journal of Materials Research, 2000, 15, 1490-1495.	1.2	7

#	Article	IF	CITATIONS
163	Sol–gel synthesis of Li2ZrSi6O15 powders. Journal of Materials Chemistry, 2000, 10, 1255-1258.	6.7	13
164	Synthesis of lithium silicates. Journal of Nuclear Materials, 1998, 257, 309-317.	1.3	128
165	Alkaline and Alkaline-Earth Ceramic Oxides for CO2 Capture, Separation and Subsequent Catalytic Chemical Conversion. , 0, , .		9
166	Enhanced CO capture properties of Li2MnO3 via inducing layered to spinel transition by cation doping with Fe, Co, Ni and Cu. Reaction Chemistry and Engineering, 0, , .	1.9	5