Jun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565396/publications.pdf

Version: 2024-02-01

414414 279798 2,127 32 23 32 h-index citations g-index papers 33 33 33 2518 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single Mucosal, but Not Parenteral, Immunization with Recombinant Adenoviral-Based Vaccine Provides Potent Protection from Pulmonary Tuberculosis. Journal of Immunology, 2004, 173, 6357-6365.	0.8	328
2	TNF- $\hat{l}\pm$ is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. Journal of Clinical Investigation, 2004, 113, 401-413.	8.2	166
3	Macrophages are a significant source of type 1 cytokines during mycobacterial infection. Journal of Clinical Investigation, 1999, 103, 1023-1029.	8.2	159
4	Mechanisms of Mucosal and Parenteral Tuberculosis Vaccinations: Adenoviral-Based Mucosal Immunization Preferentially Elicits Sustained Accumulation of Immune Protective CD4 and CD8 T Cells within the Airway Lumen. Journal of Immunology, 2005, 174, 7986-7994.	0.8	151
5	Single Intranasal Mucosal Mycobacterium bovis BCG Vaccination Confers Improved Protection Compared to Subcutaneous Vaccination against Pulmonary Tuberculosis. Infection and Immunity, 2004, 72, 238-246.	2.2	150
6	Adenoviral Gene Delivery of Elafin and Secretory Leukocyte Protease Inhibitor Attenuates NF-lºB-Dependent Inflammatory Responses of Human Endothelial Cells and Macrophages to Atherogenic Stimuli. Journal of Immunology, 2004, 172, 4535-4544.	0.8	136
7	Intranasal Mucosal Boosting with an Adenovirus-Vectored Vaccine Markedly Enhances the Protection of BCG-Primed Guinea Pigs against Pulmonary Tuberculosis. PLoS ONE, 2009, 4, e5856.	2.5	104
8	Role of Eotaxin-1 (CCL11) and CC Chemokine Receptor 3 (CCR3) in Bleomycin-Induced Lung Injury and Fibrosis. American Journal of Pathology, 2005, 167, 1485-1496.	3.8	101
9	Activation of CD8 T Cells by Mycobacterial Vaccination Protects against Pulmonary Tuberculosis in the Absence of CD4 T Cells. Journal of Immunology, 2004, 173, 4590-4597.	0.8	75
10	Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood, 2000, 95, 2337-2345.	1.4	74
11	Genetically Determined Disparate Innate and Adaptive Cell-Mediated Immune Responses to Pulmonary Mycobacterium bovis BCG Infection in C57BL/6 and BALB/c Mice. Infection and Immunity, 2000, 68, 6946-6953.	2.2	69
12	Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine, 2007, 25, 1342-1352.	3.8	69
13	IL-12-Independent Th1 <i>-</i> Type Immune Responses to Respiratory Viral Infection: Requirement of IL-18 for IFN- 3 Release in the Lung But Not for the Differentiation of Viral-Reactive Th1 <i>-</i> Type Lymphocytes. Journal of Immunology, 2000, 164, 2575-2584.	0.8	62
14	Critical Role of the Interleukin-17/Interleukin-17 Receptor Axis in Regulating Host Susceptibility to Respiratory Infection with <i>Chlamydia </i> Species. Infection and Immunity, 2009, 77, 5059-5070.	2.2	60
15	Multiple Inositol Polyphosphate Phosphatase: Evolution as a Distinct Group within the Histidine Phosphatase Family and Chromosomal Localization of the Human and Mouse Genes to Chromosomes 10q23 and 19. Genomics, 1999, 56, 324-336.	2.9	57
16	CD4+CD25+Foxp3+ Regulatory T Cells Promote Th17 Responses and Genital Tract Inflammation upon Intracellular <i>Chlamydia muridarum</i> Infection. Journal of Immunology, 2013, 191, 3430-3439.	0.8	39
17	Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation. Vaccine, 2002, 20, 2887-2898.	3.8	36
18	Protection by CD4 or CD8 T Cells against Pulmonary <i>Mycobacterium bovis</i> Bacillus Calmette-Guelrin Infection. Infection and Immunity, 1998, 66, 5537-5542.	2.2	36

#	Article	IF	CITATIONS
19	Tuberculosis vaccines: the past, present and future. Expert Review of Vaccines, 2002, 1, 341-354.	4.4	30
20	Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncolmmunology, 2016, 5, e1151591.	4.6	29
21	Development of Cell-Based Tuberculosis Vaccines: Genetically Modified Dendritic Cell Vaccine Is a Much More Potent Activator of CD4 and CD8 T Cells Than Peptide- or Protein-Loaded Counterparts. Molecular Therapy, 2006, 13, 766-775.	8.2	26
22	Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Vaccine, 2012, 30, 350-360.	3.8	26
23	Enhanced Protection Against Fatal Mycobacterial Infection in SCID Beige Mice by Reshaping Innate Immunity with IFN-Î ³ Transgene. Journal of Immunology, 2001, 167, 375-383.	0.8	25
24	Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Scientific Reports, 2020, 10, 13343.	3.3	21
25	Mast cells and IgE activation do not alter the development of oral tolerance in a murine model. Journal of Allergy and Clinical Immunology, 2012, 130, 705-715.e1.	2.9	18
26	Differential Pattern of Inflammatory Molecule Regulation in Intestinal Epithelial Cells Stimulated with IL-1. Journal of Immunology, 2006, 177, 5604-5611.	0.8	17
27	Role of surface proteins SspA and SspB of Streptococcus gordonii in innate immunity. Microbiology (United Kingdom), 2012, 158, 2099-2106.	1.8	15
28	Differential expression of transforming growth factor-beta in benign vs. papillary thyroid cancer nodules; a potential diagnostic tool?. Journal of Otolaryngology - Head and Neck Surgery, 2014, 43, 22.	1.9	14
29	ILâ€17R deletion predicts highâ€grade colorectal cancer and poor clinical outcomes. International Journal of Cancer, 2019, 145, 548-558.	5.1	12
30	IL-17RC is critically required to maintain baseline A20 production to repress JNK isoform-dependent tumor-specific proliferation. Oncotarget, 2017, 8, 43153-43168.	1.8	9
31	Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood, 2000, 95, 2337-2345.	1.4	8
32	Respiratory macrophages regulate CD4 T memory responses to mucosal immunization with recombinant adenovirus-based vaccines. Cellular Immunology, 2016, 310, 53-62.	3.0	5