Giovanni B Appetecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: Unravelling the effect of diboron trioxide. Journal of the European Ceramic Society, 2022, 42, 1023-1032.	2.8	20
2	Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries. Electrochimica Acta, 2022, 412, 140123.	2.6	11
3	Sodium-Conducting Ionic Liquid Electrolytes: Electrochemical Stability Investigation. Applied Sciences (Switzerland), 2022, 12, 4174.	1.3	6
4	A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. Energy Storage Materials, 2021, 42, 826-835.	9.5	22
5	Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion. Journal of Physical Chemistry B, 2021, 125, 12500-12517.	1.2	11
6	Ionic liquid electrolytes for high-voltage, lithium-ion batteries. Journal of Power Sources, 2020, 479, 228791.	4.0	64
7	Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices. Membranes, 2020, 10, 359.	1.4	2
8	Ionic Liquid Electrolytes for Safer and More Reliable Sodium Battery Systems. Applied Sciences (Switzerland), 2020, 10, 6323.	1.3	15
9	Magnetic Resonance Imaging and Molecular Dynamics Characterization of Ionic Liquid in Poly(ethylene oxide)-Based Polymer Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 23800-23811.	4.0	8
10	Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled in an Ionic Liquid Electrolyte. Nano Letters, 2020, 20, 7011-7019.	4.5	18
11	A More Sustainable and Cheaper Oneâ€Pot Route for the Synthesis of Hydrophobic Ionic Liquids for Electrolyte Applications. ChemSusChem, 2019, 12, 4946-4952.	3.6	9
12	Asymmetric ammonium-based ionic liquids as electrolyte components for safer, high-energy, electrochemical storage devices. Energy Storage Materials, 2019, 18, 1-9.	9.5	23
13	Mesoscopic structural organization in fluorinated pyrrolidinium-based room temperature ionic liquids. Journal of Molecular Liquids, 2019, 289, 111110.	2.3	14
14	Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Molecular Systems Design and Engineering, 2019, 4, 850-871.	1.7	38
15	Ionic liquid electrolytes for room temperature sodium battery systems. Electrochimica Acta, 2019, 306, 317-326.	2.6	27
16	Microscopic Structural and Dynamic Features in Triphilic Room Temperature Ionic Liquids. Frontiers in Chemistry, 2019, 7, 285.	1.8	25
17	Structural features of selected protic ionic liquids based on a super-strong base. Physical Chemistry Chemical Physics, 2019, 21, 25369-25378.	1.3	6
18	Safer electrolyte components for rechargeable batteries. Physical Sciences Reviews, 2019, 4, .	0.8	0

#	Article	IF	CITATIONS
19	Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?. Journal of Power Sources, 2018, 383, 157-163.	4.0	23
20	Relaxational Dynamics in the PYR14-IM14 Ionic Liquid by Mechanical Spectroscopy. Materials Research, 2018, 21, .	0.6	4
21	4. Battery Materials. , 2018, , 75-260.		0
22	lonic Liquid-Based Electrolyte Membranes for Medium-High Temperature Lithium Polymer Batteries. Membranes, 2018, 8, 41.	1.4	23
23	Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li 7 La 3 Zr 2 O 12 in P(EO) 15 LiTFSI. Journal of Power Sources, 2017, 353, 287-297.	4.0	159
24	Mesoscopic organization in ionic liquids. Topics in Current Chemistry, 2017, 375, 58.	3.0	29
25	Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. ACS Nano, 2017, 11, 5933-5943.	7.3	69
26	Towards improvement of the electrochemical properties of ionic liquid-containing polyethylene oxide-based electrolytes. Electrochimica Acta, 2017, 235, 323-331.	2.6	24
27	From Nanoscale to Microscale: Crossover in the Diffusion Dynamics within Two Pyrrolidinium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2017, 8, 5196-5202.	2.1	23
28	Performance and Ageing Robustness of Graphite/NMC Pouch Prototypes Manufactured through Eco-Friendly Materials and Processes. ChemSusChem, 2017, 10, 3581-3587.	3.6	13
29	About the Purification Route of Ionic Liquid Precursors. Challenges, 2017, 8, 11.	0.9	17
30	Mesoscopic organization in ionic liquids. Topics in Current Chemistry Collections, 2017, , 247-263.	0.2	1
31	A Computational and Experimental Study of the Conformers of Pyrrolidinium Ionic Liquid Cations Containing an Ethoxy Group in the Alkyl Side Chain. Advances in Chemistry, 2016, 2016, 1-9.	1.1	7
32	Novel functionalized ionic liquid with a sulfur atom in the aliphatic side chain of the pyrrolidinium cation. Electrochemistry Communications, 2016, 63, 26-29.	2.3	9
33	Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells. Journal of Power Sources, 2016, 331, 426-434.	4.0	22
34	N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems. Electrochimica Acta, 2016, 191, 624-630.	2.6	27
35	GREENLION Project: Advanced Manufacturing Processes for Low Cost Greener Li-Ion Batteries. Lecture Notes in Mobility, 2015, , 45-60.	0.2	1
36	Multiple points of view of heteronuclear NOE: Long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts. Journal of Molecular Liquids, 2015, 210, 215-222.	2.3	21

#	Article	IF	CITATIONS
37	Electrolytes for rechargeable lithium batteries. , 2015, , 73-116.		9
38	Ionic liquid mixtures with tunable physicochemical properties. Electrochimica Acta, 2015, 151, 599-608.	2.6	36
39	Pyrrolidinium-Based Ionic Liquids Doped with Lithium Salts: How Does Li ⁺ Coordination Affect Its Diffusivity?. Journal of Physical Chemistry B, 2014, 118, 13679-13688.	1.2	63
40	Sodium-conducting ionic liquid-based electrolytes. Electrochemistry Communications, 2014, 43, 1-4.	2.3	55
41	Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. Journal of Power Sources, 2014, 245, 779-786.	4.0	139
42	Composite anodes based on nanotube titanium oxide from electro-oxidation of Ti metal substrate. Journal of Power Sources, 2014, 247, 883-889.	4.0	12
43	Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 2014, 269, 608-615.	4.0	64
44	Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. Journal of Power Sources, 2014, 263, 29-36.	4.0	37
45	An advanced ionic liquid-lithium salt electrolyte mixture based on the bis(fluoromethanesulfonyl)imide anion. Electrochemistry Communications, 2014, 43, 5-8.	2.3	4
46	Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4ÂV-class cathode active materials. Journal of Power Sources, 2014, 246, 846-857.	4.0	91
47	Toward more environmentally friendly routes to high purity ionic liquids. MRS Bulletin, 2013, 38, 540-547.	1.7	12
48	Asymmetry effect of novel per(fluoroalkylsulfonyl)imide anions in pyrrolidinium ionic liquids. RSC Advances, 2013, 3, 17755.	1.7	18
49	Water-soluble, triflate-based, pyrrolidinium ionic liquids. Electrochimica Acta, 2013, 99, 108-116.	2.6	31
50	Mesoscopic structural organization in triphilic room temperature ionic liquids. Faraday Discussions, 2013, 167, 499.	1.6	73
51	Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochimica Acta, 2013, 96, 124-133.	2.6	81
52	Mixtures of ionic liquids for low temperature electrolytes. Electrochimica Acta, 2012, 82, 69-74.	2.6	85
53	Physical and electrochemical properties of binary ionic liquid mixtures: (1â^x) PYR14TFSI–(x) PYR14IM14. Electrochimica Acta, 2012, 60, 163-169.	2.6	82
54	Development of ionic liquid-based lithium battery prototypes. Journal of Power Sources, 2012, 199, 239-246.	4.0	119

GIOVANNI B APPETECCHI

#	Article	IF	CITATIONS
55	Inhibition of Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices. Journal of Physical Chemistry C, 2011, 115, 19431-19436.	1.5	58
56	Molecular Environment and Enhanced Diffusivity of Li ⁺ Ions in Lithium-Salt-Doped Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2011, 2, 153-157.	2.1	134
57	Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011, 196, 9719-9730.	4.0	132
58	The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochimica Acta, 2011, 57, 153-159.	2.6	106
59	Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 2011, 57, 220-227.	2.6	23
60	Chemical–physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids. Electrochimica Acta, 2011, 56, 1300-1307.	2.6	149
61	Room temperature lithium polymer batteries based on ionic liquids. Journal of Power Sources, 2011, 196, 6703-6709.	4.0	103
62	(Invited) Long-Term Cyclability of Lithium Metal Electrodes in Ionic Liquid-Based Electrolytes at Room Temperature. ECS Transactions, 2010, 25, 127-138.	0.3	32
63	UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. Journal of Power Sources, 2010, 195, 6130-6137.	4.0	157
64	Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 2010, 195, 3668-3675.	4.0	282
65	Ionic Liquid Binary Mixtures for Low Temperature Applications. Advances in Science and Technology, 2010, 72, 315-319.	0.2	6
66	Blending ionic liquids: how physico-chemical properties change. Physical Chemistry Chemical Physics, 2010, 12, 1784.	1.3	69
67	Phase Behavior and Thermal Properties of Ternary Ionic Liquidâ^'Lithium Salt (ILâ^'ILâ^'LiX) Electrolytes. Journal of Physical Chemistry C, 2010, 114, 6201-6204.	1.5	52
68	Mixtures of Ionic Liquid in Combination with Graphite Electrodes: The Role of Electrolyte Additives and Li-salt. ECS Transactions, 2009, 16, 45-49.	0.3	11
69	(Invited) LiFSI-PYR1AFSI Binary Electrolyte Mixtures for Lithium Batteries. ECS Transactions, 2009, 25, 49-60.	0.3	21
70	Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 2009, 54, 1325-1332.	2.6	210
71	Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytesI. Electrochemical characterization of the electrolytes. Journal of Power Sources, 2009, 192, 599-605.	4.0	176
72	Lithium insertion in graphite from ternary ionic liquid–lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature. Journal of Power Sources, 2009, 192, 606-611.	4.0	120

#	Article	IF	CITATIONS
73	Electrochemical and Physicochemical Properties of PY[sub 14]FSI-Based Electrolytes with LiFSI. Journal of the Electrochemical Society, 2009, 156, A891.	1.3	136
74	Structural Organization and Transport Properties of Novel Pyrrolidinium-Based Ionic Liquids with Perfluoroalkyl Sulfonylimide Anions. Journal of Physical Chemistry B, 2009, 113, 10750-10759.	1.2	102
75	Nanoscale organization in piperidinium-based room temperature ionic liquids. Journal of Chemical Physics, 2009, 130, 164521.	1.2	221
76	Solvent-free, PYR1ATFSI Ionic Liquids-based Ternary Polymer Electrolyte Systems. II. Battery Tests. ECS Transactions, 2008, 11, 119-129.	0.3	11
77	Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochimica Acta, 2008, 53, 6397-6401.	2.6	86
78	A novel ternary polymer electrolyte for LMP batteries based on thermal cross-linked poly(urethane) Tj ETQq0 0 0 2153-2161.	rgBT /Ove 2.6	lock 10 Tf 50 31
79	Physical and Electrochemical Properties of <i>N</i> -Alkyl- <i>N</i> -methylpyrrolidinium Bis(fluorosulfonyl)imide Ionic Liquids: PY ₁₃ FSI and PY ₁₄ FSI. Journal of Physical Chemistry B, 2008, 112, 13577-13580.	1.2	166
80	The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochimica Acta, 2007, 53, 1837-1842.	2.6	80
81	Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems. Journal of Power Sources, 2007, 171, 861-869.	4.0	156
82	Investigation of the Electrochemical Properties of Polymer–LiX–Ionic Liquid Ternary Systems. Australian Journal of Chemistry, 2007, 60, 47.	0.5	17
83	Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of the Electrochemical Society, 2006, 153, A1685.	1.3	193
84	0.6Ah Li/V2O5 battery prototypes based on solvent-free PEO–LiN(SO2CF2CF3)2 polymer electrolytes. Journal of Power Sources, 2005, 143, 236-242.	4.0	24
85	Novel polymeric systems for lithium ion batteries gel electrolytes. Electrochimica Acta, 2005, 50, 4396-4404.	2.6	18
86	Recent developments in the ENEA lithium metal battery project. Electrochimica Acta, 2005, 50, 3859-3865.	2.6	121
87	NMR Investigation of Ionic Liquidâ^'LiX Mixtures:Â Pyrrolidinium Cations and TFSI-Anions. Journal of Physical Chemistry B, 2005, 109, 22814-22819.	1.2	178
88	Investigation of swelling phenomena in PEO-based polymer electrolytesII. Chemical and electrochemical characterization. Solid State Ionics, 2004, 170, 63-72.	1.3	34
89	Hot-pressed, dry, composite, PEO-based electrolyte membranes. Journal of Power Sources, 2003, 114, 105-112.	4.0	173
90	Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes. Journal of Power Sources, 2003, 124, 246-253.	4.0	173

GIOVANNI B APPETECCHI

#	Article	IF	CITATIONS
91	Investigation on lithium–polymer electrolyte batteries. Journal of Power Sources, 2001, 97-98, 790-794.	4.0	46
92	Electrochemical testing of industrially produced PEO-based polymer electrolytes. Journal of Power Sources, 2001, 101, 42-46.	4.0	31
93	Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochemistry Communications, 2001, 3, 281-284.	2.3	120
94	A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries. Journal of Electroanalytical Chemistry, 1999, 463, 248-252.	1.9	57
95	High-performance electrolyte membranes for plastic lithium batteries. Journal of Power Sources, 1997, 66, 77-82.	4.0	104
96	Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta, 1995, 40, 991-997.	2.6	415
97	Study of ion-molecule interaction in poly(methylmethacrylate) based gel electrolytes by raman spectroscopy. Electrochimica Acta, 1995, 40, 2379-2382.	2.6	61
98	Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta, 1994, 39, 2187-2194.	2.6	167