
Dhiman Mallick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5565014/publications.pdf Version: 2024-02-01

ΟΗΙΜΑΝ ΜΑΙΤΙCK

#	Article	IF	CITATIONS
1	Flexible V-shaped piezoelectric-triboelectric device for biomechanical energy harvesting and sensing. Journal Physics D: Applied Physics, 2022, 55, 365501.	1.3	16
2	Performance Improvement of MEMS Electromagnetic Vibration Energy Harvester Using Optimized Patterns of Micromagnet Arrays. IEEE Magnetics Letters, 2021, 12, 1-5.	0.6	8
3	Low-Cost, High-Performance Piezoelectric Nanocomposite for Mechanical Energy Harvesting. IEEE Sensors Journal, 2021, 21, 21268-21276.	2.4	16
4	Optimization of ZnO/Su-8 Based Photopatternable, Piezoelectric Nano-Composites for Mechanical Energy Harvesting Applications. , 2021, , .		0
5	Electrical Energy Injection using Hybrid SECE for High Performance Nonlinear Mechanical Energy Harvesting. , 2021, , .		1
6	Size-Dependent Magnetization Switching in Magnetoelectric Heterostructures for Self-Biased MRAM Applications. IEEE Transactions on Electron Devices, 2021, 68, 4418-4424.	1.6	10
7	Modelling and Verification of Nonlinear Electromechanical Coupling in Micro-Scale Kinetic Electromagnetic Energy Harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 565-577.	3.5	7
8	System Level Modeling and Optimization of Hybrid Vibration Energy Harvesters. , 2020, , .		3
9	Modelling of Electromagnetic Coupling in Micro-scale Electromagnetic Energy Harvester. , 2019, , .		Ο
10	Magnetic performances and switching behavior of Co-rich CoPtP micro-magnets for applications in magnetic MEMS. Journal of Applied Physics, 2019, 125, .	1.1	10
11	MEMS-Based Vibrational Energy Harvesting and Conversion Employing Micro-/Nano-Magnetics. IEEE Transactions on Magnetics, 2019, 55, 1-15.	1.2	23
12	Improved Performances of Wideband MEMS Electromagnetic Vibration Energy Harvesters using Patterned Micro-magnet Arrays. , 2019, , .		1
13	Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters. Mechanical Systems and Signal Processing, 2018, 108, 252-261.	4.4	27
14	Improved Performances of Micro-electromagnetic Energy Harvesting Devices by Minimizing the Demagnetization Field. , 2018, , .		0
15	Design Optimization of Fully Integrated, MEMS Electromagnetic Energy Harvesting Devices using Patterned Micro-magnet Arrays. , 2018, , .		Ο
16	Novel Approach to Modelling Electromechanical Coupling and Testing its Self-Consistency in Micro-Scale Kinetic Electromagnetic Energy Harvesters. , 2018, , .		1
17	Crystallographic and magnetic investigations of textured bismuth ferrite lead titanate layers. Materials Research Express, 2018, 5, 126103.	0.8	0
18	Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester. Journal of Microelectromechanical Systems, 2017, 26, 539-549.	1.7	35

DHIMAN MALLICK

#	Article	IF	CITATIONS
19	High Figure of Merit Nonlinear Microelectromagnetic Energy Harvesters for Wideband Applications. Journal of Microelectromechanical Systems, 2017, 26, 273-282.	1.7	29
20	Multi-frequency MEMS electromagnetic energy harvesting. Sensors and Actuators A: Physical, 2017, 264, 247-259.	2.0	27
21	Development and integration of micro-patterned, thick CoPtP permanent magnets for MEMS applications. , 2017, , .		Ο
22	Influence of combined fundamental potentials in a nonlinear vibration energy harvester. Scientific Reports, 2016, 6, 37292.	1.6	12
23	Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. Physical Review Letters, 2016, 117, 197701.	2.9	83
24	Integrated CoPtP Permanent Magnets for MEMS Electromagnetic Energy Harvesting Applications. Journal of Physics: Conference Series, 2016, 757, 012034.	0.3	0
25	Nonlinear Energy Harvesting Using Electromagnetic Transduction for Wide Bandwidth. IEEE Magnetics Letters, 2016, 7, 1-4.	0.6	19
26	Wideband electromagnetic energy harvesting from ambient vibrations. AIP Conference Proceedings, 2015, , .	0.3	2
27	Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils. Journal of Physics: Conference Series, 2015, 660, 012124.	0.3	6
28	Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester. Smart Materials and Structures, 2015, 24, 122001.	1.8	15
29	A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation. Smart Materials and Structures, 2015, 24, 015013.	1.8	68
30	Bidirectional electrical tuning of FR4 based electromagnetic energy harvesters. Sensors and Actuators A: Physical, 2015, 226, 154-162.	2.0	25
31	Texture analysis of thick bismuth ferrite lead titanate layers. , 2014, , .		1
32	Bandwidth widening in nonlinear electromagnetic vibrational generator by combined effect of bistability and stretching. Journal of Physics: Conference Series, 2014, 557, 012039.	0.3	3
33	An Electrically Tunable Low Frequency Electromagnetic Energy Harvester. Procedia Engineering, 2014, 87, 771-774.	1.2	2
34	Analysis of Nonlinear Spring Arm for Improved Performance of Vibrational Energy Harvesting Devices. Journal of Physics: Conference Series, 2013, 476, 012088.	0.3	8
35	Design and simulation of micro-pump, micro-valve and micro-needle for biomedical applications. , 2012, , .		6
36	Design and simulation of MEMS based thermally actuated positioning system. , 2012, , .		2