Francisco J Doblas-Reyes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER). Bulletin of the American Meteorological Society, 2004, 85, 853-872.	1.7	834
2	Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Research Letters, 2005, 32, .	1.5	566
3	Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1337-1351.	1.0	497
4	Decadal Climate Prediction: An Update from the Trenches. Bulletin of the American Meteorological Society, 2014, 95, 243-267.	1.7	454
5	Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature, 2006, 439, 576-579.	13.7	410
6	The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 219-233.	0.8	369
7	Contribution of land surface initialization to subseasonal forecast skill: First results from a multiâ€model experiment. Geophysical Research Letters, 2010, 37, .	1.5	330
8	The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. Journal of Hydrometeorology, 2011, 12, 805-822.	0.7	296
9	Seasonal climate predictability and forecasting: status and prospects. Wiley Interdisciplinary Reviews: Climate Change, 2013, 4, 245-268.	3.6	283
10	The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3751-3777.	1.3	282
11	REPRESENTING MODEL UNCERTAINTY IN WEATHER AND CLIMATE PREDICTION. Annual Review of Earth and Planetary Sciences, 2005, 33, 163-193.	4.6	251
12	Initialized near-term regional climate change prediction. Nature Communications, 2013, 4, 1715.	5.8	250
13	Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts. Bulletin of the American Meteorological Society, 2008, 89, 459-470.	1.7	232
14	ENSEMBLES: A new multiâ€model ensemble for seasonalâ€ŧoâ€annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophysical Research Letters, 2009, 36, .	1.5	229
15	Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales. Bulletin of the American Meteorological Society, 2016, 97, 1631-1647.	1.7	199
16	What global reanalysis best represents nearâ€ s urface winds?. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3236-3251.	1.0	199
17	The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geoscientific Model Development, 2022, 15, 2973-3020.	1.3	192
18	Decadal prediction skill in a multi-model ensemble. Climate Dynamics, 2012, 38, 1263-1280.	1.7	181

FRANCISCO J DOBLAS-REYES

#	Article	IF	CITATIONS
19	A review on Arctic seaâ€ice predictability and prediction on seasonal to decadal timeâ€scales. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 546-561.	1.0	177
20	Retrospective prediction of the global warming slowdown in the past decade. Nature Climate Change, 2013, 3, 649-653.	8.1	170
21	Variability and Predictability of West African Droughts: A Review on the Role of Sea Surface Temperature Anomalies. Journal of Climate, 2015, 28, 4034-4060.	1.2	148
22	The rationale behind the success of multi-model ensembles in seasonal forecasting - II. Calibration and combination. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 234-252.	0.8	142
23	ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dynamics, 2011, 37, 455-471.	1.7	127
24	Probabilistic prediction of climate using multi-model ensembles: from basics to applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1991-1998.	1.8	123
25	Towards operational predictions of the near-term climate. Nature Climate Change, 2019, 9, 94-101.	8.1	116
26	Current and Emerging Developments in Subseasonal to Decadal Prediction. Bulletin of the American Meteorological Society, 2020, 101, E869-E896.	1.7	116
27	Multi-model spread and probabilistic seasonal forecasts in PROVOST. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2069-2088.	1.0	113
28	Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1538-1559.	1.0	112
29	Real-time multi-model decadal climate predictions. Climate Dynamics, 2013, 41, 2875-2888.	1.7	111
30	Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Climate Dynamics, 2012, 38, 349-362.	1.7	108
31	Revisiting the ENSO Teleconnection to the Tropical North Atlantic. Journal of Climate, 2017, 30, 6945-6957.	1.2	100
32	On the predictability of the extreme summer 2003 over Europe. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	97
33	The rationale behind the success of multi-model ensembles in seasonal forecasting – II. Calibration and combination. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 57, 234.	0.8	96
34	Towards reliable extreme weather and climate event attribution. Nature Communications, 2019, 10, 1732.	5.8	94
35	Forecast Calibration and Combination: A Simple Bayesian Approach for ENSO. Journal of Climate, 2004, 17, 1504-1516.	1.2	91
36	Climate change and infectious diseases: Can we meet the needs for better prediction?. Climatic Change, 2013, 118, 625-640.	1.7	88

3

#	Article	IF	CITATIONS
37	The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 2022, 13, 321-340.	2.7	86
38	A Debiased Ranked Probability Skill Score to Evaluate Probabilistic Ensemble Forecasts with Small Ensemble Sizes. Journal of Climate, 2005, 18, 1513-1523.	1.2	85
39	Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment, 2021, 2, 340-357.	12.2	85
40	The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Climate Dynamics, 2003, 21, 501-514.	1.7	81
41	Toward an Integrated Seasonal Forecasting System for South America. Journal of Climate, 2006, 19, 3704-3721.	1.2	77
42	Impact of snow initialization on sub-seasonal forecasts. Climate Dynamics, 2013, 41, 1969-1982.	1.7	77
43	The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 57, 219.	0.8	73
44	Reliability of regional climate model trends. Environmental Research Letters, 2013, 8, 014055.	2.2	72
45	Multiyear climate predictions using two initialization strategies. Geophysical Research Letters, 2013, 40, 1794-1798.	1.5	72
46	On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Climate Dynamics, 2012, 39, 2025-2040.	1.7	70
47	Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	69
48	Seasonal Climate Prediction: A New Source of Information for the Management of Wind Energy Resources. Journal of Applied Meteorology and Climatology, 2017, 56, 1231-1247.	0.6	66
49	Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dynamics, 2013, 40, 963-981.	1.7	63
50	Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophysical Research Letters, 2006, 33, .	1.5	62
51	Decadal climate prediction with the European Centre for Medium-Range Weather Forecasts coupled forecast system: Impact of ocean observations. Journal of Geophysical Research, 2011, 116, .	3.3	62
52	The Indian Ocean: The Region of Highest Skill Worldwide in Decadal Climate Prediction*. Journal of Climate, 2013, 26, 726-739.	1.2	62
53	Climate service development, delivery and use in Europe at monthly to inter-annual timescales. Climate Risk Management, 2014, 6, 1-5.	1.6	62
54	Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2559-2577.	1.6	61

#	Article	IF	CITATIONS
55	Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dynamics, 2016, 47, 919-935.	1.7	59
56	Forecast assimilation: a unified framework for the combination of multi-model weather and climate predictions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 253-264.	0.8	58
57	Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dynamics, 2012, 39, 2013-2023.	1.7	57
58	Skilful forecasting of global fire activity using seasonal climate predictions. Nature Communications, 2018, 9, 2718.	5.8	57
59	Reliability of decadal predictions. Geophysical Research Letters, 2012, 39, .	1.5	55
60	Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophysical Research Letters, 2016, 43, 2158-2164.	1.5	54
61	Impact of springtime Himalayan–Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts. Climate Dynamics, 2016, 47, 2709-2725.	1.7	53
62	What have we learnt from EUPORIAS climate service prototypes?. Climate Services, 2018, 9, 21-32.	1.0	52
63	Medium-Range, Monthly, and Seasonal Prediction for Europe and the Use of Forecast Information. Journal of Climate, 2006, 19, 6025-6046.	1.2	49
64	Linking crop yield anomalies to large-scale atmospheric circulation in Europe. Agricultural and Forest Meteorology, 2017, 240-241, 35-45.	1.9	49
65	Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project PhaseÂ5 to 6 and sensitivity to resolution. Weather and Climate Dynamics, 2020, 1, 277-292.	1.2	49
66	Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Climate Dynamics, 2016, 47, 1325-1334.	1.7	47
67	Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast. Scientific Reports, 2018, 8, 1322.	1.6	46
68	Ozone signatures of climate patterns over the Euro-Atlantic sector in the spring. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 3251-3263.	1.0	44
69	Using climate models to estimate the quality of global observational data sets. Science, 2016, 354, 452-455.	6.0	43
70	Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs. Climate Dynamics, 2010, 35, 53-74.	1.7	41
71	Links between circulation types and precipitation over Spain. Physics and Chemistry of the Earth, 2010, 35, 437-447.	1.2	41
72	The Climate-System Historical Forecast Project: Providing Open Access to Seasonal Forecast Ensembles from Centers around the Globe. Bulletin of the American Meteorological Society, 2017, 98, 2293-2301.	1.7	41

FRANCISCO J DOBLAS-REYES

#	Article	IF	CITATIONS
73	Statistical methods for interpreting Monte Carlo ensemble forecasts. Tellus, Series A: Dynamic Meteorology and Oceanography, 2000, 52, 300-322.	0.8	40
74	A posteriori adjustment of nearâ€ŧerm climate predictions: Accounting for the drift dependence on the initial conditions. Geophysical Research Letters, 2014, 41, 5200-5207.	1.5	39
75	The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes. Weather and Climate Extremes, 2015, 9, 68-77.	1.6	39
76	Storm track signature in total ozone during northern hemisphere winter. Geophysical Research Letters, 1998, 25, 2413-2416.	1.5	38
77	Replicability of the EC-Earth3 Earth system model under a change in computing environment. Geoscientific Model Development, 2020, 13, 1165-1178.	1.3	37
78	Stratospheric circulation in seasonal forecasting models: implications for seasonal prediction. Climate Dynamics, 2011, 36, 309-321.	1.7	36
79	Identifying the causes of the poor decadal climate prediction skill over the North Pacific. Journal of Geophysical Research, 2012, 117, .	3.3	36
80	Detecting Improvements in Forecast Correlation Skill: Statistical Testing and Power Analysis. Monthly Weather Review, 2017, 145, 437-450.	0.5	36
81	Added-value from initialization in predictions of Atlantic multi-decadal variability. Climate Dynamics, 2015, 44, 2539-2555.	1.7	35
82	The match between climate services demands and Earth System Models supplies. Climate Services, 2018, 12, 59-63.	1.0	33
83	Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth. Earth System Dynamics, 2021, 12, 173-196.	2.7	32
84	A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 464-475.	0.8	31
85	Realistic greenhouse gas forcing and seasonal forecasts. Geophysical Research Letters, 2007, 34, .	1.5	31
86	The value of values in climate science. Nature Climate Change, 2022, 12, 4-6.	8.1	31
87	Euro-Atlantic circulation types and modes of variability in winter. Theoretical and Applied Climatology, 2009, 96, 17-29.	1.3	29
88	Ensemble of sea ice initial conditions for interannual climate predictions. Climate Dynamics, 2014, 43, 2813-2829.	1.7	28
89	Seamless management of ensemble climate prediction experiments on HPC platforms. , 2016, , .		27
90	An R package for climate forecast verification. Environmental Modelling and Software, 2018, 103, 29-42.	1.9	27

#	Article	IF	CITATIONS
91	A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 57, 464.	0.8	26
92	Multi-year prediction of European summer drought conditions for the agricultural sector. Environmental Research Letters, 2019, 14, 124014.	2.2	26
93	Investigating the Effects of Pacific Sea Surface Temperatures on the Wind Drought of 2015 Over the United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4837-4849.	1.2	25
94	How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6. Geoscientific Model Development, 2019, 12, 3135-3148.	1.3	24
95	A Flexible Bandpass Filter Design Procedure Applied to Midlatitude Intraseasonal Variability. Monthly Weather Review, 1998, 126, 3326-3335.	0.5	23
96	Decadal prediction of interannual tropical and North Pacific sea surface temperature. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5913-5922.	1.2	23
97	Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Climate Dynamics, 2014, 42, 2675-2690.	1.7	23
98	Multiannual forecasts of Atlantic U.S. tropical cyclone wind damage potential. Geophysical Research Letters, 2015, 42, 2417-2425.	1.5	23
99	Understanding Atlantic multiâ€decadal variability prediction skill. Geophysical Research Letters, 2012, 39, .	1.5	22
100	Boreal Summer Intraseasonal Variability in Coupled Seasonal Hindcasts. Journal of Climate, 2008, 21, 4477-4497.	1.2	21
101	Polar Lower-Latitude Linkages and Their Role in Weather and Climate Prediction. Bulletin of the American Meteorological Society, 2015, 96, ES197-ES200.	1.7	21
102	The Tall Tower Dataset: a unique initiative to boost wind energy research. Earth System Science Data, 2020, 12, 429-439.	3.7	21
103	Decadal prediction of the dominant West African monsoon rainfall modes. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5260-5279.	1.2	20
104	Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: impact of SPPT on seasonal forecast quality. Climate Dynamics, 2015, 45, 3419-3439.	1.7	20
105	WMO Global Annual to Decadal Climate Update: A Prediction for 2021–25. Bulletin of the American Meteorological Society, 2022, 103, E1117-E1129.	1.7	20
106	Prospects for decadal climate prediction in the Mediterranean region. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 580-597.	1.0	19
107	A Bayesian approach for multi-model downscaling: Seasonal forecasting of regional rainfall and river flows in South America. Meteorological Applications, 2006, 13, 73.	0.9	18
108	An Evaluation Metric for Intraseasonal Variability and its Application to CMIP3 Twentieth-Century Simulations. Journal of Climate, 2010, 23, 3497-3508.	1.2	18

#	Article	IF	CITATIONS
109	Uncertainty propagation in observational references to climate modelÂscales. Remote Sensing of Environment, 2017, 203, 101-108.	4.6	18
110	Toward Consistent Observational Constraints in Climate Predictions and Projections. Frontiers in Climate, 2021, 3, .	1.3	18
111	North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, Series A: Dynamic Meteorology and Oceanography, 1998, 50, 573-595.	0.8	17
112	The 2014 High Record of Antarctic Sea Ice Extent. Bulletin of the American Meteorological Society, 2015, 96, S163-S167.	1.7	16
113	Downscaling of DEMETER winter seasonal hindcasts over Northern Italy. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 424-434.	0.8	15
114	Seasonal forecast quality of the West African monsoon rainfall regimes by multiple forecast systems. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7908-7930.	1.2	15
115	Multi-model calibration and combination of tropical seasonal sea surface temperature forecasts. Climate Dynamics, 2014, 42, 597-616.	1.7	15
116	Prediction of interannual North Atlantic sea surface temperature and its remote influence over land. Climate Dynamics, 2017, 48, 3099-3114.	1.7	15
117	Summer temperature response to extreme soil water conditions in the Mediterranean transitional climate regime. Climate Dynamics, 2022, 58, 1943-1963.	1.7	15
118	Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations. Nonlinear Processes in Geophysics, 2014, 21, 521-537.	0.6	15
119	Wintertime westward-traveling planetary-scale perturbations over the Euro-Atlantic region. Climate Dynamics, 2001, 17, 811-824.	1.7	14
120	How much does simplification of probability forecasts reduce forecast quality?. Meteorological Applications, 2008, 15, 155-162.	0.9	14
121	Finding, analysing and solving MPI communication bottlenecks in Earth System models. Journal of Computational Science, 2019, 36, 100864.	1.5	14
122	Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Climate Dynamics, 2017, 49, 1181-1195.	1.7	13
123	Multi-Model Forecast Quality Assessment of CMIP6 Decadal Predictions. Journal of Climate, 2022, 35, 4363-4382.	1.2	13
124	Observed modes of sea surface temperature variability in the South Pacific region. Climate Dynamics, 2018, 50, 1129-1143.	1.7	12
125	Characterization of the near surface wind speed distribution at global scale: ERA-Interim reanalysis and ECMWF seasonal forecasting system 4. Climate Dynamics, 2019, 52, 3307-3319.	1.7	12
126	Barriers to Using Climate Information: Challenges in Communicating Probabilistic Forecasts to Decision-Makers. Advances in Natural and Technological Hazards Research, 2016, , 95-113.	1.1	12

FRANCISCO J DOBLAS-REYES

#	Article	IF	CITATIONS
127	Hypothesis Testing for Autocorrelated Short Climate Time Series. Journal of Applied Meteorology and Climatology, 2014, 53, 637-651.	0.6	11
128	Clusters of interannual sea ice variability in the northern hemisphere. Climate Dynamics, 2016, 47, 1527-1543.	1.7	11
129	The Weather Roulette: A Game to Communicate the Usefulness of Probabilistic Climate Predictions. Bulletin of the American Meteorological Society, 2019, 100, 1909-1921.	1.7	11
130	Transforming climate model output to forecasts of wind power production: how much resolution is enough?. Meteorological Applications, 2018, 25, 1-10.	0.9	10
131	Boreal winter stratospheric variability in EC-EARTH: High-Top versus Low-Top. Climate Dynamics, 2020, 54, 3135-3150.	1.7	10
132	Calibrated multi-model ensemble summer temperature predictions over Italy. Climate Dynamics, 2013, 41, 2115-2132.	1.7	9
133	Linking the Anomaly Initialization Approach to the Mapping Paradigm: A Proof-of-Concept Study. Monthly Weather Review, 2015, 143, 4695-4713.	0.5	9
134	Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models. Climate Dynamics, 2016, 46, 2423-2434.	1.7	9
135	A perfect prognosis downscaling methodology for seasonal prediction of local-scale wind speeds. Environmental Research Letters, 2021, 16, 054010.	2.2	9
136	Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe. Climate Dynamics, 2019, 53, 7305-7320.	1.7	8
137	Multi-annual prediction of drought and heat stress to support decision making in the wheat sector. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	8
138	Constraining decadal variability yields skillful projections of nearâ€ŧerm climate change. Geophysical Research Letters, 2021, 48, e2021GL094915.	1.5	8
139	The effects of bias, drift, and trends in calculating anomalies for evaluating skill of seasonal-to-decadal initialized climate predictions. Climate Dynamics, 2022, 59, 3373-3389.	1.7	8
140	Exploring the landscape of seasonal forecast provision by Global Producing Centres. Climatic Change, 2022, 172, 1.	1.7	8
141	Energy budget of the extreme Autumn 2006 in Europe. Climate Dynamics, 2011, 36, 1055-1066.	1.7	7
142	Evaluation of the DEMETER performance for seasonal hindcasts of the Indian summer monsoon rainfall. International Journal of Climatology, 2012, 32, 1717-1729.	1.5	7
143	Decadal climate prediction with a refined anomaly initialisation approach. Climate Dynamics, 2017, 48, 1841-1853.	1.7	7
144	An anatomy of Arctic sea ice forecast biases in the seasonal prediction system with EC-Earth. Climate Dynamics, 2021, 56, 1799-1813.	1.7	7

9

#	Article	IF	CITATIONS
145	Progressive Build Up Of Co 2 In The AtmosphereOf Venus Through Multiple Volcanic Resurfacing Events. Earth, Moon and Planets, 1998, 81, 187-192.	0.3	6
146	Seasonal forecast of tropical climate with coupled ocean-atmosphere general circulation models: on the respective role of the atmosphere and the ocean components in the drift of the surface temperature error. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 387-397.	0.8	6
147	Call to Action for Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. Data Science Journal, 2021, 20, .	0.6	5
148	A Data Set for Intercomparing the Transient Behavior of Dynamical Modelâ€Based Subseasonal to Decadal Climate Predictions. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002570.	1.3	5
149	How Reliable Are Decadal Climate Predictions of Near-Surface Air Temperature?. Journal of Climate, 2021, 34, 697-713.	1.2	5
150	How decadal predictions entered the climate services arena: an example from the agriculture sector. Climate Services, 2022, 27, 100303.	1.0	5
151	DEMETER and the application of seasonal forecasts. , 0, , 674-692.		4
152	Impact of greenhouse gas concentrations on tropical storms in coupled seasonal forecasts. Tellus, Series A: Dynamic Meteorology and Oceanography, 2007, 59, 417-427.	0.8	4
153	Climate Change Communication and User Engagement: A Tool to Anticipate Climate Change. Climate Change Change Management, 2018, , 285-302.	0.6	4
154	Using statistical downscaling to assess skill of decadal predictions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1652882.	0.8	4
155	Multi-model seasonal forecasts for the wind energy sector. Climate Dynamics, 2019, 53, 2715-2729.	1.7	4
156	A Framework to Determine the Limits of Achievable Skill for Interannual to Decadal Climate Predictions. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2882-2896.	1.2	4
157	Decadal predictability and prediction skill of sea surface temperatures in the South Pacific region. Climate Dynamics, 2020, 54, 3945-3958.	1.7	4
158	Dependence of the climate prediction skill on spatiotemporal scales: Internal versus radiativelyâ€forced contribution. Geophysical Research Letters, 2013, 40, 3213-3219.	1.5	3
159	Dynamical prediction of Arctic sea ice modes of variability. Climate Dynamics, 2019, 52, 3157-3173.	1.7	3
160	A Novel Initialization Technique for Decadal Climate Predictions. Frontiers in Climate, 2021, 3, .	1.3	3
161	Impact of I/O and Data Management in Ensemble Large Scale Climate Forecasting Using EC-Earth3. Procedia Computer Science, 2014, 29, 2370-2379.	1.2	2