
## Seongbin Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564883/publications.pdf Version: 2024-02-01



SEONCRIN IO

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process. Korean Journal of Chemical Engineering, 2022, 39, 1028-1035.                                              | 2.7  | 4         |
| 2  | A fundamental study of CO2 capture and CH4 production in a rapid cyclic system using nickel-lithium-silicate as a catal-sorbent. Fuel, 2022, 311, 122602.                                                                   | 6.4  | 15        |
| 3  | CO2 Sorption and Regeneration Properties of K2CO3/Al2O3-Based Sorbent at High Pressure and Moderate Temperature. Applied Sciences (Switzerland), 2022, 12, 2989.                                                            | 2.5  | 3         |
| 4  | Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catalysis, 2022, 12, 7486-7510.                                                                                                        | 11.2 | 14        |
| 5  | Investigation of Co–Fe–Al Catalysts for High-Calorific Synthetic Natural Gas Production: Pilot-Scale<br>Synthesis of Catalysts. Catalysts, 2021, 11, 105.                                                                   | 3.5  | 6         |
| 6  | Influence of Ni on Fe and Co-Fe Based Catalysts for High-Calorific Synthetic Natural Gas. Catalysts,<br>2021, 11, 697.                                                                                                      | 3.5  | 4         |
| 7  | Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane<br>Reforming on PEMFC. Catalysts, 2021, 11, 951.                                                                                | 3.5  | 1         |
| 8  | Coke-promoted Ni/CaO catal-sorbents in the production of cyclic CO and syngas. Sustainable Energy and Fuels, 2021, 6, 81-88.                                                                                                | 4.9  | 21        |
| 9  | CO <sub>2</sub> green technologies in CO <sub>2</sub> capture and direct utilization processes:<br>methanation, reverse water-gas shift, and dry reforming of methane. Sustainable Energy and Fuels,<br>2020, 4, 5543-5549. | 4.9  | 48        |
| 10 | A novel integrated CO <sub>2</sub> capture and direct methanation process using Ni/CaO catal-sorbents. Sustainable Energy and Fuels, 2020, 4, 4679-4687.                                                                    | 4.9  | 45        |
| 11 | Effects of Thin-Film Thickness on Sensing Properties of SnO <sub>2</sub> -Based Gas Sensors for the<br>Detection of H <sub>2</sub> S Gas at ppm Levels. Journal of Nanoscience and Nanotechnology, 2020, 20,<br>7169-7174.  | 0.9  | 4         |
| 12 | Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas. Korean Journal of Chemical Engineering, 2020, 37, 1690-1698.                                      | 2.7  | 6         |
| 13 | Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature. Korean Journal of Chemical Engineering, 2020, 37, 2317-2325.                                       | 2.7  | 5         |
| 14 | Catalytic Technologies for CO Hydrogenation for the Production of Light Hydrocarbons and Middle Distillates. Catalysts, 2020, 10, 99.                                                                                       | 3.5  | 26        |
| 15 | Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel. Catalysts, 2019, 9, 573.                                                                           | 3.5  | 12        |
| 16 | Selective CO Hydrogenation Over Bimetallic Co-Fe Catalysts for the Production of Light Paraffin<br>Hydrocarbons (C2–C4): Effect of Space Velocity, Reaction Pressure and Temperature. Catalysts, 2019, 9,<br>779.           | 3.5  | 8         |
| 17 | Hybrid catalysts in a double-layered bed reactor for the production of C2–C4 paraffin hydrocarbons.<br>Catalysis Communications, 2019, 127, 29-33.                                                                          | 3.3  | 6         |
| 18 | SnO2 nanowire gas sensors for detection of ppb level NOx gas. Adsorption, 2019, 25, 1259-1269.                                                                                                                              | 3.0  | 10        |

Seongbin Jo

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Performance of an Auto-Reduced Nickel Catalyst for Auto-Thermal Reforming of Dodecane. Catalysts,<br>2018, 8, 371.                                                                                                      | 3.5 | 5         |
| 20 | Selective CO hydrogenation over bimetallic Co-Fe catalysts for the production of light paraffin<br>hydrocarbons (C2-C4): Effect of H2/CO ratio and reaction temperature. Catalysis Communications,<br>2018, 117, 74-78. | 3.3 | 18        |
| 21 | Regenerable potassium-based alumina sorbents prepared by CO2 thermal treatment for post-combustion carbon dioxide capture. Korean Journal of Chemical Engineering, 2016, 33, 3207-3215.                                 | 2.7 | 12        |