Seongbin Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564883/publications.pdf

Version: 2024-02-01

1040056 940533 21 273 9 16 citations h-index g-index papers 21 21 21 210 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CO ₂ green technologies in CO ₂ capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane. Sustainable Energy and Fuels, 2020, 4, 5543-5549.	4.9	48
2	A novel integrated CO ₂ capture and direct methanation process using Ni/CaO catal-sorbents. Sustainable Energy and Fuels, 2020, 4, 4679-4687.	4.9	45
3	Catalytic Technologies for CO Hydrogenation for the Production of Light Hydrocarbons and Middle Distillates. Catalysts, 2020, 10, 99.	3.5	26
4	Coke-promoted Ni/CaO catal-sorbents in the production of cyclic CO and syngas. Sustainable Energy and Fuels, 2021, 6, 81-88.	4.9	21
5	Selective CO hydrogenation over bimetallic Co-Fe catalysts for the production of light paraffin hydrocarbons (C2-C4): Effect of H2/CO ratio and reaction temperature. Catalysis Communications, 2018, 117, 74-78.	3.3	18
6	A fundamental study of CO2 capture and CH4 production in a rapid cyclic system using nickel-lithium-silicate as a catal-sorbent. Fuel, 2022, 311, 122602.	6.4	15
7	Perspective on Sorption Enhanced Bifunctional Catalysts to Produce Hydrocarbons. ACS Catalysis, 2022, 12, 7486-7510.	11.2	14
8	Regenerable potassium-based alumina sorbents prepared by CO2 thermal treatment for post-combustion carbon dioxide capture. Korean Journal of Chemical Engineering, 2016, 33, 3207-3215.	2.7	12
9	Enhanced Ni-Al-Based Catalysts and Influence of Aromatic Hydrocarbon for Autothermal Reforming of Diesel Surrogate Fuel. Catalysts, 2019, 9, 573.	3.5	12
10	SnO2 nanowire gas sensors for detection of ppb level NOx gas. Adsorption, 2019, 25, 1259-1269.	3.0	10
11	Selective CO Hydrogenation Over Bimetallic Co-Fe Catalysts for the Production of Light Paraffin Hydrocarbons (C2–C4): Effect of Space Velocity, Reaction Pressure and Temperature. Catalysts, 2019, 9, 779.	3.5	8
12	Hybrid catalysts in a double-layered bed reactor for the production of C2–C4 paraffin hydrocarbons. Catalysis Communications, 2019, 127, 29-33.	3.3	6
13	Effect of reducibility on the performance of Co-based catalysts for the production of high-calorie synthetic natural gas. Korean Journal of Chemical Engineering, 2020, 37, 1690-1698.	2.7	6
14	Investigation of Co–Fe–Al Catalysts for High-Calorific Synthetic Natural Gas Production: Pilot-Scale Synthesis of Catalysts. Catalysts, 2021, 11, 105.	3 . 5	6
15	Performance of an Auto-Reduced Nickel Catalyst for Auto-Thermal Reforming of Dodecane. Catalysts, 2018, 8, 371.	3 . 5	5
16	Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature. Korean Journal of Chemical Engineering, 2020, 37, 2317-2325.	2.7	5
17	Effects of Thin-Film Thickness on Sensing Properties of SnO ₂ -Based Gas Sensors for the Detection of H ₂ S Gas at ppm Levels. Journal of Nanoscience and Nanotechnology, 2020, 20, 7169-7174.	0.9	4
18	Influence of Ni on Fe and Co-Fe Based Catalysts for High-Calorific Synthetic Natural Gas. Catalysts, 2021, 11, 697.	3.5	4

SEONGBIN JO

#	Article	IF	CITATIONS
19	Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process. Korean Journal of Chemical Engineering, 2022, 39, 1028-1035.	2.7	4
20	CO2 Sorption and Regeneration Properties of K2CO3/Al2O3-Based Sorbent at High Pressure and Moderate Temperature. Applied Sciences (Switzerland), 2022, 12, 2989.	2.5	3
21	Preparation of Eggshell-Type Ru/Al2O3 Catalysts for Hydrogen Production Using Steam-Methane Reforming on PEMFC. Catalysts, 2021, 11, 951.	3.5	1