List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electron Transfer Mechanisms upon Lithium Deintercalation from LiCoO ₂ to CoO ₂ Investigated by XPS. Chemistry of Materials, 2008, 20, 583-590.	3.2	411
2	Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surface and Interface Analysis, 2005, 37, 773-781.	0.8	226
3	Comprehensive X-ray Photoelectron Spectroscopy Study of the Conversion Reaction Mechanism of CuO in Lithiated Thin Film Electrodes. Journal of Physical Chemistry C, 2013, 117, 4421-4430.	1.5	223
4	InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description. Journal of the American Chemical Society, 2012, 134, 19701-19708.	6.6	202
5	Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study. Applied Surface Science, 2007, 253, 4895-4905.	3.1	198
6	Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. Journal of Power Sources, 2007, 174, 462-468.	4.0	196
7	XPS Valence Characterization of Lithium Salts as a Tool to Study Electrode/Electrolyte Interfaces of Li-Ion Batteries. Journal of Physical Chemistry B, 2006, 110, 12986-12992.	1.2	169
8	The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. Journal of Power Sources, 2015, 273, 14-24.	4.0	161
9	Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics, 2011, 186, 29-36.	1.3	143
10	Highâ€Performing Monometallic Cobalt Layered Double Hydroxide Supercapacitor with Defined Local Structure. Advanced Functional Materials, 2014, 24, 4831-4842.	7.8	137
11	Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms. Journal of Power Sources, 2013, 236, 265-275.	4.0	134
12	Surface Properties of LiCoO ₂ Investigated by XPS Analyses and Theoretical Calculations. Journal of Physical Chemistry C, 2009, 113, 5843-5852.	1.5	132
13	XPS Investigation of Surface Reactivity of Electrode Materials: Effect of the Transition Metal. ACS Applied Materials & Interfaces, 2015, 7, 6629-6636.	4.0	104
14	Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. Journal of Power Sources, 2013, 224, 269-277.	4.0	89
15	Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive. Solid State Ionics, 2012, 215, 36-44.	1.3	86
16	Intercalation compounds of Mg–Al layered double hydroxides with dichlophenac: different methods of preparation and physico-chemical characterization. Applied Clay Science, 2004, 27, 95-106.	2.6	84
17	Possible Explanation for the Efficiency of Al-Based Coatings on LiCoO ₂ : Surface Properties of LiCo _{1â^'<i>x</i>} Al _{<i>x</i>} O ₂ Solid Solution. Chemistry of Materials, 2009, 21, 5607-5616.	3.2	84
18	Impact of the salts and solvents on the SEI formation in Sb/Na batteries: An XPS analysis. Electrochimica Acta, 2016, 207, 284-292.	2.6	84

#	Article	IF	CITATIONS
19	Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. Acta Biomaterialia, 2018, 65, 462-474.	4.1	83
20	Diblock and Random Donor/Acceptor "Double Cable―Polythiophene Copolymers via the GRIM Method. Macromolecules, 2008, 41, 9736-9743.	2.2	81
21	Intercalation and grafting of benzene derivatives into zinc–aluminum and copper–chromium layered double hydroxide hosts: an XPS monitoring study. Physical Chemistry Chemical Physics, 2011, 13, 17564.	1.3	76
22	Acid–base properties of Mg–Ni–Al mixed oxides using LDH as precursors. Thermochimica Acta, 2001, 379, 85-93.	1.2	72
23	XPS study of electrode/electrolyte interfaces of ÎCu6Sn5 electrodes in Li-ion batteries. Journal of Power Sources, 2007, 174, 1086-1090.	4.0	72
24	Effect of the nanoparticle synthesis method on dendronized iron oxides as MRI contrast agents. Dalton Transactions, 2013, 42, 2146-2157.	1.6	72
25	Paving the Way for K-Ion Batteries: Role of Electrolyte Reactivity through the Example of Sb-Based Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 34116-34122.	4.0	68
26	Lithium-Ion Batteries Working at 85°C: Aging Phenomena and Electrode/Electrolyte Interfaces Studied by XPS. Journal of the Electrochemical Society, 2012, 159, A1739-A1746.	1.3	66
27	Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries. Journal of Power Sources, 2012, 206, 245-252.	4.0	61
28	Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries. Journal of Power Sources, 2014, 248, 861-873.	4.0	58
29	XPS investigations achieved on the first cycle of V2O5 thin films used in lithium microbatteries. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150, 1-10.	0.8	57
30	Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries Journal of Physical Chemistry C, 2013, 117, 19302-19313.	1.5	57
31	Ageing of atactic and isotactic polystyrene thin films treated by oxygen DC pulsed plasma. Surface and Coatings Technology, 2005, 200, 2310-2316.	2.2	56
32	Studies of 1T TiS2 by STM, AFM and XPS: the mechanism of hydrolysis in air. Applied Surface Science, 1996, 93, 231-235.	3.1	55
33	XPS investigations of TiOySz amorphous thin films used as positive electrode in lithium microbatteries. Solid State Ionics, 2005, 176, 1529-1537.	1.3	53
34	Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale. Journal of Power Sources, 2011, 196, 10289-10296.	4.0	52
35	Heterogeneous sulfoxidation of thioethers by hydrogen peroxide over layered double hydroxides as catalysts. Catalysis Today, 2001, 66, 529-534.	2.2	48
36	Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau. Applied Surface Science, 2017, 411, 449-456.	3.1	48

#	Article	IF	CITATIONS
37	Thorough study of the local structure of LiPON thin films to better understand the influence of a solder-reflow type thermal treatment on their performances. Solid State Ionics, 2012, 206, 72-77.	1.3	44
38	On the catalytic properties of mixed oxides obtained from the Cu-Mg-Al LDH precursors in the process of hydrogenation of the cinnamaldehyde. Applied Catalysis A: General, 2004, 262, 43-51.	2.2	43
39	Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries. Energy Storage Materials, 2020, 26, 213-222.	9.5	43
40	Influence of the cation nature of high sulfur content oxysulfide thin films MO S (M=W, Ti) studied by XPS. Applied Surface Science, 2004, 236, 377-386.	3.1	42
41	Study of a Nanocomposite Based on a Conducting Polymer:Â Polyaniline. Langmuir, 2005, 21, 1575-1583.	1.6	41
42	Study of the effects of surface modification by thermal shock method on photocatalytic activity of TiO2 P25. Applied Catalysis B: Environmental, 2015, 165, 260-268.	10.8	40
43	Probing the in-depth distribution of organic/inorganic molecular species within the SEI of LTO/NMC and LTO/LMO batteries: A complementary ToF-SIMS and XPS study. Applied Surface Science, 2020, 501, 144266.	3.1	40
44	Electronic structure of intercalated metal disulfides (and) studied by XPS and theoretical calculations. Journal of Alloys and Compounds, 1996, 245, 30-39.	2.8	37
45	Temperature effects on Li 4 Ti 5 O 12 electrode/electrolyte interfaces at the first cycle: A X-ray Photoelectron Spectroscopy and Scanning Auger Microscopy study. Journal of Power Sources, 2016, 318, 291-301.	4.0	37
46	Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Advances, 2018, 8, 32146-32156.	1.7	36
47	Experimental (X-Ray Photoelectron Spectroscopy) and theoretical studies of benzene based organics intercalated into layered double hydroxide. Solid State Sciences, 2011, 13, 1676-1686.	1.5	35
48	Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnology Reviews, 2015, 4, .	2.6	34
49	Alternatively linking fullerene and conjugated polymers. Journal of Polymer Science Part A, 2009, 47, 2304-2317.	2.5	33
50	XPS Analysis of K-based Reference Compounds to Allow Reliable Studies of Solid Electrolyte Interphase in K-ion Batteries. ACS Applied Energy Materials, 2021, 4, 11693-11699.	2.5	33
51	Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Research Letters, 2012, 7, 349.	3.1	32
52	Effect of total gas and oxygen partial pressure during deposition on the properties of sputtered V2O5 thin films. Solid State Ionics, 2005, 176, 1627-1634.	1.3	30
53	First principles calculations of solid–solid interfaces: an application to conversion materials for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 22063.	6.7	29
54	Surface fluorination of single-phase TiO2 by thermal shock method for enhanced UV and visible light induced photocatalytic activity. Applied Catalysis B: Environmental, 2014, 144, 1-11.	10.8	29

HERVE MARTINEZ

#	Article	IF	CITATIONS
55	New insights into the characterization of the electrode/electrolyte interfaces within LiMn ₂ O ₄ /Li ₄ Ti ₅ O ₁₂ cells, by X-ray photoelectron spectroscopy, scanning Auger microscopy and time-of-flight secondary ion mass spectrometry. Journal of Materials Chemistry A, 2017, 5, 15315-15325.	5.2	29
56	Surface film morphology (AFM) and chemical features (XPS) of cycled V2O5 thin films in lithium microbatteries. Journal of Power Sources, 2008, 180, 836-844.	4.0	28
57	The electronic structure of the CuRh1â^'xMgxO2 thermoelectric materials: An X-ray photoelectron spectroscopy study. Journal of Solid State Chemistry, 2011, 184, 2387-2392.	1.4	28
58	New Investigations on the Surface Reactivity of Layered Lithium Oxides. Journal of Physical Chemistry C, 2012, 116, 20332-20341.	1.5	27
59	New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO ₂ core–shell assemblies. Nanoscale, 2014, 6, 11130-11140.	2.8	27
60	Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods. ACS Nano, 2015, 9, 2792-2804.	7.3	27
61	Stabilization of Metal Single Atoms on Carbon and TiO ₂ Supports for CO ₂ Hydrogenation: The Importance of Regulating Charge Transfer. Advanced Materials Interfaces, 2021, 8, 2001777.	1.9	26
62	Percolation network of organo-modified layered double hydroxide platelets into polystyrene showing enhanced rheological and dielectric behavior. Journal of Materials Chemistry, 2010, 20, 9484.	6.7	25
63	Effect of silver co-sputtering on V2O5 thin films for lithium microbatteries. Thin Solid Films, 2008, 516, 7271-7281.	0.8	24
64	Influence of Vinylene Carbonate Additive on the Li ₄ Ti ₅ O ₁₂ Electrode/Electrolyte Interface for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1314-A1320.	1.3	24
65	Impact of the Salt Anion on K Metal Reactivity in EC/DEC Studied Using GC and XPS Analysis. ACS Applied Materials & Interfaces, 2021, 13, 57505-57513.	4.0	23
66	XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chemical Physics, 2006, 323, 606-616.	0.9	22
67	The effect of glow discharge sputtering on the analysis of metal oxide films. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 155-166.	1.5	22
68	Hexakis [60]Fullerene Adductâ€Mediated Covalent Assembly of Ruthenium Nanoparticles and Their Catalytic Properties. Chemistry - A European Journal, 2017, 23, 13379-13386.	1.7	22
69	Impact of the cycling temperature on electrode/electrolyte interfaces within Li4Ti5O12 vs LiMn2O4 cells. Journal of Power Sources, 2020, 448, 227573.	4.0	22
70	Characterization of rf sputtered TiOySz thin films. Thin Solid Films, 2005, 484, 113-123.	0.8	21
71	Design and Cellular Fate of Bioinspired Au–Ag Nanoshells@Hybrid Silica Nanoparticles. Langmuir, 2016, 32, 10073-10082.	1.6	21
72	An X-ray photoelectron spectroscopy study of the electrochemical behaviour of iron molybdate thin films in lithium and sodium cells. Journal of Power Sources, 2017, 342, 796-807.	4.0	21

#	Article	IF	CITATIONS
73	How carbon coating or continuous carbon pitch matrix influence the silicon electrode/electrolyte interfaces and the performance in Liâ€ion batteries. , 2022, 1, .		21
74	Electrochemical Fabrication and Properties of Highly Ordered Feâ€Doped TiO ₂ Nanotubes. ChemPhysChem, 2012, 13, 3707-3713.	1.0	20
75	Influence of the Positive Electrode on Li ₄ Ti ₅ O ₁₂ (LTO) Electrode/Electrolyte Interfaces in Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2925-A2934.	1.3	20
76	Acid-Base properties of MgCuAl mixed oxides. Journal of Thermal Analysis and Calorimetry, 2003, 72, 191-198.	2.0	19
77	Analysis of microscopic modifications and macroscopic surface properties of polystyrene thin films treated under d.c. pulsed discharge conditions. Surface and Interface Analysis, 2005, 37, 544-554.	0.8	19
78	Design of Ag–Au nanoshell core/mesoporous oriented silica shell nanoparticles through a sol–gel surfactant templating method. Microporous and Mesoporous Materials, 2013, 171, 72-77.	2.2	19
79	Self-supported carbon nanofibers as negative electrodes for K-ion batteries: Performance and mechanism. Electrochimica Acta, 2020, 362, 137125.	2.6	19
80	A new route for local probing of inner interactions within a layered double hydroxide/benzene derivative hybrid material. Physical Chemistry Chemical Physics, 2009, 11, 3554.	1.3	18
81	Study of surface fluorination of photocatalytic TiO2 by thermal shock method. Journal of Solid State Chemistry, 2012, 187, 300-308.	1.4	18
82	Thermoresponsive gold nanoshell@mesoporous silica nano-assemblies: an XPS/NMR survey. Physical Chemistry Chemical Physics, 2015, 17, 28719-28728.	1.3	18
83	Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono―or Bisphosphonateâ€Anchored Dendronized Iron Oxide Nanoparticles. ChemPlusChem, 2017, 82, 647-659.	1.3	18
84	4-Benzoylbenzoate intercalated in layered double hydroxides: a new catalyst for photo-oxidation of sulfides in solution and in the gas phase. Tetrahedron Letters, 2004, 45, 4047-4050.	0.7	17
85	Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation. ACS Applied Materials & Interfaces, 2017, 9, 33238-33249.	4.0	17
86	Experimental (XPS/STM) and theoretical (FLAPW) studies of model systems M1/4TiS2 (M=Fe, Co, Ni): influence of the inserted metal. Journal of Electron Spectroscopy and Related Phenomena, 2002, 125, 181-196.	0.8	16
87	Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte. Nanoscale Research Letters, 2014, 9, 544.	3.1	16
88	Surface film formation on TiSnSb electrodes: Impact of electrolyte additives. Journal of Power Sources, 2014, 268, 645-657.	4.0	16
89	Chemoselective reduction of quinoline over Rh–C ₆₀ nanocatalysts. Catalysis Science and Technology, 2019, 9, 6884-6898.	2.1	16
90	Interpretation of scanning tunneling microscopy and atomic force microscopy images of 1T-TiS2. Surface Science, 1998, 400, 247-257.	0.8	15

6

#	Article	IF	CITATIONS
91	An anionic photo-sensitizer intercalated in a layered double hydroxide: Preparation, characterization and photo-oxidation efficiency. Microporous and Mesoporous Materials, 2005, 84, 343-352.	2.2	15
92	Lithium borophosphate thin film electrolyte as an alternative to LiPON for solder-reflow processed lithium-ion microbatteries. Solid State Ionics, 2013, 249-250, 49-55.	1.3	15
93	Electrochemical Redox Processes Involved in Carbon-Coated KVPO ₄ F for High Voltage K-Ion Batteries Revealed by XPS Analysis. Journal of the Electrochemical Society, 2020, 167, 130527.	1.3	15
94	Influence of the metal nature (Ni, Cu, Mg) on the surface acid–base properties of mixed oxides elaborated from LDH. Surface and Interface Analysis, 2006, 38, 234-237.	0.8	14
95	Vanadium pentoxide thin films used as positive electrode in lithium microbatteries: An XPS study during cycling. Journal of Physics and Chemistry of Solids, 2006, 67, 1320-1324.	1.9	14
96	A critical discussion on the analysis of buried interfaces in Li solid-state batteries. <i>Ex situ</i> and <i>in situ</i> / <i> operando</i> studies. Journal of Materials Chemistry A, 2021, 9, 25341-25368.	5.2	14
97	X-ray photoelectron spectroscopy and scanning tunneling microscopy investigations of the solid solutions TixTa1â^xS2 (0⩽2x⩽1). Surface Science, 2004, 563, 83-98.	0.8	13
98	Electrochemical Mechanisms during Lithium Insertion into TiO[sub 0.6]S[sub 2.8] Thin Film Positive Electrode in Lithium Microbatteries. Journal of the Electrochemical Society, 2005, 152, A141.	1.3	13
99	In-depth profile analysis of oxide films by radiofrequency glow discharge optical emission spectrometry (rf-CD-OES): possibilities of depth-resolved solid-state speciation. Journal of Analytical Atomic Spectrometry, 2008, 23, 1378.	1.6	13
100	Pseudotetragonal Structure of Li _{2+<i>x</i>} Ce _{<i>x</i>} ³⁺ Ce _{12â^'<i>x</i>} ⁴⁺ F< The First Mixed Valence Cerium Fluoride. Inorganic Chemistry, 2010, 49, 686-694.	sub950 <td>sub2:</td>	sub2:
101	Thermal behaviors and grafting process of LDH/benzene derivative hybrid systems. Thermochimica Acta, 2012, 538, 1-8.	1.2	12
102	Dual Cation- and Anion-Based Redox Process in Lithium Titanium Oxysulfide Thin Film Cathodes for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 2275-2284.	4.0	12
103	Toward efficient Li-ion cells at high temperatures: Example of TiSnSb material. Journal of Power Sources, 2018, 391, 51-58.	4.0	12
104	Experimental Measurements of Carbon Dioxide Solubility in Na–Ca–K–Cl Solutions at High Temperatures and Pressures up to 20 MPa. Journal of Chemical & Engineering Data, 2019, 64, 2497-2503.	1.0	12
105	A tentative theory for conjugated rod-coil multi-block copolymer assembly and the initial characterisation by atomic force microscopy and small angle neutron scattering of poly(polymethylphenylsilane-block-polyisoprene). Synthetic Metals, 2003, 139, 463-469.	2.1	11
106	From rational design of organometallic precursors to optimized synthesis of core/shell Ge/GeO ₂ nanoparticles. Dalton Transactions, 2015, 44, 7242-7250.	1.6	11
107	Atomic Layer Fluorination of the Li ₄ Ti ₅ O ₁₂ Surface: A Multiprobing Survey. ACS Applied Energy Materials, 2019, 2, 6681-6692.	2.5	11
108	3D Ruthenium Nanoparticle Covalent Assemblies from Polymantane Ligands for Confined Catalysis. Chemistry of Materials, 2020, 32, 2365-2378.	3.2	11

HERVE MARTINEZ

#	Article	IF	CITATIONS
109	Lithium-rich manganese oxide spinel thin films as 3 V electrode for lithium batteries. Electrochimica Acta, 2015, 180, 528-534.	2.6	10
110	Role of Negative Electrode Porosity in Long-Term Aging of NMC//Graphite Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A7096-A7103.	1.3	10
111	Silicon-based electrodes formulation in buffered solution for enhanced electrode-electrolyte interfaces. Journal of Power Sources, 2021, 489, 229465.	4.0	10
112	A study on the aging process of polystyrene thin films treated under DC pulsed discharges conditions in oxygen and argon-oxygen mixtures. EPJ Applied Physics, 2003, 21, 59-66.	0.3	9
113	Sustainable quantum dot chemistry: effects of precursor, solvent, and surface chemistry on the synthesis of Zn ₃ P ₂ nanocrystals. Chemical Communications, 2020, 56, 3321-3324.	2.2	9
114	Electronic structure (XPS and ab-initio band structure calculation) and scanning probe microscopy images of α-tin sulfide. Applied Surface Science, 1996, 103, 149-158.	3.1	8
115	Homoepitaxial growth of CdTe on vicinal CdTe(100) surfaces: Reaction kinetics and mechanism. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1-8.	0.9	8
116	The specific behavior of MxTiS2 (x=1/4, M=Fe, Ni) surfaces probed by scanning microscopy (STM and) Tj ETQq0 C	0 orgBT /C	verlock 10 1
117	Ti vacancies on the (001) surface of TiS2 detected by scanning tunneling microscopy: A combined experimental and theoretical study. Solid State Sciences, 2007, 9, 594-599.	1.5	8
118	Iron molybdate thin films prepared by sputtering and their electrochemical behavior in Li batteries. Journal of Alloys and Compounds, 2018, 735, 1454-1462.	2.8	8
119	Surface analysis of two misfit layer compounds — (PbS)1.18(TiS2) and (PbS)1.18(TiS2)2 — by scanning probe microscopies (AFM and STM) and X-ray photoelectron spectroscopy (XPS). Applied Surface Science, 1998, 125, 259-272.	3.1	7
120	Further theoretical analyses (2D and 3D) of Ni1/4TiS2 probed by XPS/STM studies. Surface Science, 2002, 517, 43-51.	0.8	7
121	Improvement of the stability of TiSnSb anode under lithiation using SEI forming additives and room temperature ionic liquid/DMC mixed electrolyte. Electrochimica Acta, 2015, 170, 72-84.	2.6	7
122	Impact of the metal electrode size in half-cells studies: Example of graphite/Li coin cells. Electrochemistry Communications, 2018, 90, 61-64.	2.3	7
123	Surface atomic layer fluorination of Li4Ti5O12: Investigation of the surface electrode reactivity and the outgassing behavior in LiBs. Applied Surface Science, 2020, 527, 146834.	3.1	7
124	Investigation of glow-discharge-induced morphology modifications on silicon wafers and chromium conversion coatings by AFM and rugosimetry. Analytical and Bioanalytical Chemistry, 2010, 396, 2841-2853.	1.9	6

125Design of gold nanoshells via a gelatin-mediated self-assembly of gold nanoparticles on silica cores.
RSC Advances, 2014, 4, 63234-63237.1.76

126119Sn Mössbauer spectroscopy study of the mechanism of lithium reaction with self-organized
Ti1/2Sn1/2O2 nanotubes. Nanoscale, 2014, 6, 7827.2.86

#	Article	IF	CITATIONS
127	Revealing surface functionalities via microwave for the para-fluoro-Thiol click reaction. Polymer, 2020, 202, 122675.	1.8	6
128	A nanopatterned dual reactive surface driven by block copolymer self-assembly. Nanoscale, 2020, 12, 7532-7537.	2.8	6
129	An improved plasmonic Au–Ag/TiO2/rGO photocatalyst through entire visible range absorption, charge separation and high adsorption ability. New Journal of Chemistry, 2021, 45, 11727-11736.	1.4	6
130	Optimized electrode formulation for enhanced performance of graphite in K-ion batteries. Electrochimica Acta, 2022, 425, 140747.	2.6	6
131	Surface Layer Fluorination of TiO ₂ Electrodes for Electrode Protection LiBs: Fading the Reactivity of the Negative Electrode/Electrolyte Interface. Journal of the Electrochemical Society, 2019, 166, A1905-A1914.	1.3	5
132	Influence of the Cathode Potential on Electrode Interactions within a Li ₄ Ti ₅ O ₁₂ vs LiNi _{3/5} Mn _{1/5} Co _{1/5} O ₂ Li-Ion Battery. Journal of the Electrochemical Society. 2020. 167. 040504.	1.3	5
133	How the Binder/Solvent Formulation Impacts the Electrolyte Reactivity/Solid Electrolyte Interphase Formation and Cycling Stability of Conversion Type Electrodes. Journal of the Electrochemical Society, 2020, 167, 060533.	1.3	5
134	Thiogermanate glasses—influence of the modifier cation—a combined XPS and theoretical study. Physical Chemistry Chemical Physics, 2005, 7, 180-186.	1.3	4
135	Artificial SEI for Lithium-Ion Battery Anodes. , 2015, , 173-202.		4
136	Electronic and structural properties of Ti vacancies on the (001) surface of TiS2: Theoretical scanning tunneling microscopy images. Journal of Chemical Physics, 2007, 126, 074703.	1.2	3
137	Facile One‣tep Synthesis of Polyoxazoline oated Iron Oxide Nanoparticles. ChemistrySelect, 2018, 3, 11898-11901.	0.7	3
138	Cross-Section Auger/XPS Imaging of Conversion Type Electrodes: How Their Morphological Evolution Controls the Performance in Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 5300-5307.	2.5	3
139	Core@Corona Functional Nanoparticle-Driven Rod–Coil Diblock Copolymer Self-Assembly. Langmuir, 2019, 35, 16925-16934.	1.6	3
140	Study of intercalated Ti atom in tetrahedral or octahedral sites of titanium disulfide (001) surfaces: Theoretical scanning tunneling microscopy images. Journal of Chemical Physics, 2008, 128, 014708.	1.2	2
141	Regioregular Phenyl and Phenoxy Substituted Polythiophenes for Bulk Heterojunction Solar Cells. Macromolecular Symposia, 2008, 268, 19-24.	0.4	2
142	Effect of molar mass and regioregularity on the photovoltaic properties of a reduced bandgap phenylâ€substituted polythiophene. Journal of Polymer Science Part A, 2012, 50, 1953-1966.	2.5	2
143	2D and 3D Ruthenium Nanoparticle Covalent Assemblies for Phenyl Acetylene Hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020, 4069-4082.	1.0	2
144	Cross-Section Auger Analysis to Study the Bulk Organization/Structure of Mn-Co Nano-Composites for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 010508.	1.3	2

#	Article	IF	CITATIONS
145	UHV-STM images on intercalated metal disulfide Ni1/4TiS2 and Ni1/3TiS2: influence of sulfur chemical surrounding. Materials Research Bulletin, 2000, 35, 1643-1651.	2.7	1
146	Ab initio electron energyâ€loss spectra and depolarization effects: Application to carbon nanotubes. International Journal of Quantum Chemistry, 2012, 112, 2171-2184.	1.0	1
147	Cross-section Auger imaging: A suitable tool to study aging mechanism of conversion type electrodes. Journal of Power Sources, 2019, 441, 227213.	4.0	1
148	Atomic Layer Fluorination of 5 V Class Positive Electrode Material LiCoPO 4 for Enhanced Electrochemical Performance. Batteries and Supercaps, 2020, 3, 1051-1058.	2.4	1
149	Functional nanoparticle-driven self-assembled diblock copolymer hybrid nano-patterns. Polymer Chemistry, 2022, 13, 1920-1930.	1.9	1
150	Differentiated contrasts for M1/4TiS2 (M=Fe, Ni) UHV-STM images. Applied Surface Science, 2000, 167, 160-168.	3.1	0
151	New Insights on Li4Ti5O12 Electrode/Electrolyte Interfaces: A X-Ray Photoelectron Spectroscopy and Scanning Auger Microscopy Study. ECS Meeting Abstracts, 2016, , .	0.0	0
152	New Insights on Li4Ti5O12 Electrode/Electrolyte Interfaces: A X-Ray Photoelectron Spectroscopy and Scanning Auger Microscopy Stud. ECS Meeting Abstracts, 2016, , .	0.0	0
153	Surface analyses of low carbon steel and stainless steel in geothermal synthetic Na-Ca-Ci brine saturated with CO <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e2687" altimg="si1.svg"><mml:mnblocket id="d1e2687" altimg="si1.svg"><mml:mnblocket id="d1e2687" altimg="si1.svg"><mml:mnblocket id="d1e2687" altimg="si1.svg"><mml:msub><mml:mrow id="d1e2687" altimg="si1.svg"><mml:msub><mml:msub></mml:msub></mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub></mml:mrow </mml:msub><td>1.0</td><td>0</td></mml:mnblocket </mml:mnblocket </mml:mnblocket </mml:math>	1.0	0