Ling-Ying Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564092/publications.pdf Version: 2024-02-01

LINC-YING SHI

#	Article	IF	CITATIONS
1	Stable, Strain-Sensitive Conductive Hydrogel with Antifreezing Capability, Remoldability, and Reusability. ACS Applied Materials & Interfaces, 2018, 10, 44000-44010.	8.0	234
2	High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Applied Materials & Interfaces, 2019, 11, 47350-47357.	8.0	168
3	Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37597-37606.	8.0	92
4	Remarkably Rich Variety of Nanostructures and Order–Order Transitions in a Rod–Coil Diblock Copolymer. Macromolecules, 2013, 46, 5308-5316.	4.8	70
5	Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. Journal of Materials Science, 2020, 55, 1280-1291.	3.7	69
6	Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer, 2020, 186, 122027.	3.8	66
7	Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. Journal of Materials Science, 2019, 54, 8515-8530.	3.7	59
8	Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor. Materials Science and Engineering C, 2020, 107, 110310.	7.3	51
9	Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. Journal of Materials Chemistry A, 2014, 2, 19122-19130.	10.3	50
10	Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical, self-healing, adhesive and conductive properties. Materials Science and Engineering C, 2020, 109, 110567.	7.3	45
11	Shape-Stable Hydrated Salts/Polyacrylamide Phase-Change Organohydrogels for Smart Temperature Management. ACS Applied Materials & Interfaces, 2021, 13, 21810-21821.	8.0	45
12	Highly Efficient Solar Evaporator Based On a Hydrophobic Association Hydrogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 18114-18125.	6.7	42
13	Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Materials Science and Engineering C, 2019, 99, 460-467.	7.3	41
14	Orderâ^'Order Transition in a Rodâ^'Coil Diblock Copolymer Induced by Supercritical CO ₂ . Macromolecules, 2011, 44, 2900-2907.	4.8	38
15	Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydrate Polymers, 2021, 257, 117665.	10.2	34
16	Form-Stable phase change composites based on porous carbon derived from polyacrylonitrile hydrogel. Chemical Engineering Journal, 2022, 431, 134206.	12.7	34
17	Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane. Applied Surface Science, 2017, 404, 230-237.	6.1	32
18	Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohydrate Polymers, 2019, 207, 694-703.	10.2	32

LING-YING SHI

#	Article	IF	CITATIONS
19	Thermoreversible Order–Order Transition of a Diblock Copolymer Induced by the Unusual Coil–Rod Conformational Change of One Block. Macromolecules, 2012, 45, 9719-9726.	4.8	28
20	Synthesis and Self-Assembly of Rod–Rod Block Copolymers with Different Rod Diameters. Macromolecules, 2013, 46, 8253-8263.	4.8	27
21	A mechanically robust double-network hydrogel with high thermal responses via doping hydroxylated boron nitride nanosheets. Journal of Materials Science, 2019, 54, 3368-3382.	3.7	27
22	Thin Film Self-Assembly of a Silicon-Containing Rod–Coil Liquid Crystalline Block Copolymer. Macromolecules, 2019, 52, 679-689.	4.8	26
23	Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer, 2021, 231, 124111.	3.8	26
24	Robust and ultrasensitive hydrogel sensors enhanced by MXene/cellulose nanocrystals. Journal of Materials Science, 2021, 56, 8871-8886.	3.7	25
25	Novel Selfâ€Healing, Shapeâ€Memory, Tunable Doubleâ€Layer Actuators Based on Semiâ€IPN and Physical Doubleâ€Network Hydrogels. Macromolecular Materials and Engineering, 2018, 303, 1800505.	3.6	24
26	Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	24
27	Synthesis and self-assembly of a linear coil-coil-rod ABC triblock copolymer. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1524-1534.	3.8	23
28	Self-assembly of a silicon-containing side-chain liquid crystalline block copolymer in bulk and in thin films: kinetic pathway of a cylinder to sphere transition. Nanoscale, 2019, 11, 285-293.	5.6	18
29	Vertical Lamellae Formed by Two-Step Annealing of a Rod–Coil Liquid Crystalline Block Copolymer Thin Film. ACS Nano, 2020, 14, 4289-4297.	14.6	17
30	Effect of Self-Nucleation and Stress-Induced Crystallization on the Tunable Two-Way Shape-Memory Effect of a Semicrystalline Network. Macromolecules, 2022, 55, 5104-5114.	4.8	16
31	Hierarchical Structures in Thin Films of Macrophase- and Microphase-Separated AB/AC Diblock Copolymer Blends. Macromolecules, 2012, 45, 5530-5537.	4.8	15
32	Research progress on ZnSe and ZnTe anodes for rechargeable batteries. Nanoscale, 2022, 14, 9609-9635.	5.6	15
33	Resolving Triblock Terpolymer Morphologies by Vapor-Phase Infiltration. Chemistry of Materials, 2020, 32, 5309-5316.	6.7	14
34	Multimechanism Physical Cross-Linking Results in Tough and Self-Healing Hydrogels for Various Applications. ACS Applied Polymer Materials, 2020, 2, 3378-3389.	4.4	14
35	4D Printing of a Fully Biobased Shape Memory Copolyester <i>via</i> a UV-Assisted FDM Strategy. ACS Sustainable Chemistry and Engineering, 2022, 10, 6304-6312.	6.7	14
36	Covalent modification of graphene as a 2D nanofiller for enhanced mechanical performance of poly(glutamate) hybrid gels. RSC Advances, 2015, 5, 86407-86413.	3.6	13

LING-YING SHI

#	Article	IF	CITATIONS
37	Annealing Process Dependence of the Self-Assembly of Rod–Coil Block Copolymer Thin Films. Macromolecules, 2021, 54, 1657-1664.	4.8	12
38	Core–Shell and Zigzag Nanostructures from a Thin Film Silicon-Containing Conformationally Asymmetric Triblock Terpolymer. ACS Macro Letters, 2019, 8, 852-858.	4.8	11
39	Bending Behavior and Directed Self-Assembly of Rod–Coil Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 10437-10445.	8.0	11
40	H-bonding tuned phase transitions of a strong microphase-separated polydimethylsiloxane-b-poly(2-vinylpyridine) block copolymer. Polymer, 2018, 153, 277-286.	3.8	7
41	Extraordinary boundary morphologies of large-scale ordered domains of spheres in thin films of a narrowly dispersed diblock copolymer via thermodynamic control. Nanoscale, 2015, 7, 17756-17763.	5.6	6
42	Selective sequential infiltration synthesis of ZnO in the liquid crystalline phase of silicon-containing rod-coil block copolymers. Nanoscale, 2022, 14, 1807-1813.	5.6	6
43	A novel self-assembled hybrid organogel of polypeptide-based block copolymers with inclusion of polypeptide-functionalized graphene. RSC Advances, 2017, 7, 1471-1479.	3.6	4
44	2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications. Current Applied Materials, 2022, 1, .	0.5	4
45	Thermoreversible Orderâ^'Order Transition of a Triblock Copolymer Containing a Mesogenâ€Jacketed Liquid Crystalline Polymer with a Reâ€Entrant Phase Behavior. Macromolecular Chemistry and Physics, 2016, 217, 1081-1088.	2.2	3
46	Tough, High stretched, Selfâ€healing Câ€dots/Hydrophobically Associated Composited Hydrogels and Their Use for a Fluorescence Sensing Platform. ChemistrySelect, 2018, 3, 5756-5765.	1.5	3
47	Dependences of Confining Size and Interfacial Curvature on the Glass Transition of Polydimethylsiloxane in Selfâ€Assembled Block Copolymers. Macromolecular Chemistry and Physics, 2018, 219, 1700518.	2.2	1