
Marcello Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5564018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 1997, 7, 432-452.	2.9	219
2	Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 665-691.	4.0	215
3	Managing competing goals — a key role for the frontopolar cortex. Nature Reviews Neuroscience, 2017, 18, 645-657.	10.2	208
4	Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3606-3615.	2.6	181
5	Hierarchical Development of the Primate Visual Cortex, as Revealed by Neurofilament Immunoreactivity: Early Maturation of the Middle Temporal Area (MT). Cerebral Cortex, 2006, 16, 405-414.	2.9	179
6	A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates. Journal of Neuroscience, 2013, 33, 15120-15125.	3.6	172
7	Parallel Evolution of Cortical Areas Involved in Skilled Hand Use. Journal of Neuroscience, 2007, 27, 10106-10115.	3.6	164
8	Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cerebral Cortex, 1998, 8, 278-294.	2.9	151
9	Organizing Principles of Human Cortical Development—Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. Cerebral Cortex, 2016, 26, 257-267.	2.9	148
10	Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion?. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8547-8551.	7.1	144
11	Visual topography of V1 in theCebus monkey. Journal of Comparative Neurology, 1987, 259, 529-548.	1.6	131
12	A simpler primate brain: the visual system of the marmoset monkey. Frontiers in Neural Circuits, 2014, 8, 96.	2.8	127
13	Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex. , 1998, 393, 505-527.		124
14	The evolution of visual cortex: where is V2?. Trends in Neurosciences, 1999, 22, 242-248.	8.6	123
15	A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. European Journal of Neuroscience, 2006, 24, 2389-2405.	2.6	118
16	Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex. Journal of Neuroscience, 2009, 29, 4548-4563.	3.6	114
17	Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1367-1374.	2.6	112
18	Functional Response Properties of Neurons in the Dorsomedial Visual Area of New World Monkeys (Callithrix jacchus). Cerebral Cortex, 2006, 16, 162-177.	2.9	111

#	Article	IF	CITATIONS
19	Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. Journal of Comparative Neurology, 2016, 524, 2161-2181.	1.6	109
20	Visual area MT in theCebus monkey: Location, visuotopic organization, and variability. Journal of Comparative Neurology, 1989, 287, 98-118.	1.6	107
21	Cortical afferents of visual area MT in the <i>Cebus</i> monkey: Possible homologies between New and old World monkeys. Visual Neuroscience, 1993, 10, 827-855.	1.0	107
22	Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. Journal of Comparative Neurology, 2006, 495, 149-172.	1.6	103
23	Representation of the visual field in the second visual area in theCebus monkey. Journal of Comparative Neurology, 1988, 275, 326-345.	1.6	101
24	Visual areas in the dorsal and medial extrastriate cortices of the marmoset. Journal of Comparative Neurology, 1995, 359, 272-299.	1.6	99
25	Topographic organization of cortical input to striate cortex in theCebusmonkey: A fluorescent tracer study. Journal of Comparative Neurology, 1991, 308, 665-682.	1.6	98
26	Visual Field Representation in Striate and Prestriate Cortices of a Prosimian Primate (Galago garnetti). Journal of Neurophysiology, 1997, 77, 3193-3217.	1.8	95
27	Visual Responses of Neurons in the Middle Temporal Area of New World Monkeys after Lesions of Striate Cortex. Journal of Neuroscience, 2000, 20, 5552-5563.	3.6	95
28	The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity. Journal of Comparative Neurology, 1997, 387, 547-567.	1.6	93
29	Cortical Input to the Frontal Pole of the Marmoset Monkey. Cerebral Cortex, 2011, 21, 1712-1737.	2.9	92
30	Contrasting Patterns of Cortical Input to Architectural Subdivisions of the Area 8 Complex: A Retrograde Tracing Study in Marmoset Monkeys. Cerebral Cortex, 2013, 23, 1901-1922.	2.9	91
31	Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey. Journal of Comparative Neurology, 2000, 422, 621-651.	1.6	90
32	Cortical Connections of Area V6Av in the Macaque: A Visual-Input Node to the Eye/Hand Coordination System. Journal of Neuroscience, 2011, 31, 1790-1801.	3.6	89
33	Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus). Journal of Comparative Neurology, 1996, 372, 264-282.	1.6	88
34	Saccadic Modulation of Neural Responses: Possible Roles in Saccadic Suppression, Enhancement, and Time Compression. Journal of Neuroscience, 2008, 28, 10952-10960.	3.6	88
35	Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nature Communications, 2020, 11, 1133.	12.8	86
36	Visuotopic Reorganization in the Primary Visual Cortex of Adult Cats Following Monocular and Binocular Retinal Lesions. Cerebral Cortex, 1996, 6, 388-405.	2.9	84

#	Article	IF	CITATIONS
37	Cellular heterogeneity in cerebral cortex: A study of the morphology of pyramidal neurones in visual areas of the marmoset monkey. Journal of Comparative Neurology, 1999, 415, 33-51.	1.6	83
38	Quantitative Analysis of the Corticocortical Projections to the Middle Temporal Area in the Marmoset Monkey: Evolutionary and Functional Implications. Cerebral Cortex, 2006, 16, 1361-1375.	2.9	81
39	Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Brazilian Journal of Medical and Biological Research, 2002, 35, 1485-1498.	1.5	80
40	Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing. European Journal of Neuroscience, 2009, 30, 578-592.	2.6	79
41	A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nature Neuroscience, 2020, 23, 271-280.	14.8	77
42	Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2009, 514, 11-29.	1.6	76
43	Anatomical and physiological definition of the motor cortex of the marmoset monkey. Journal of Comparative Neurology, 2008, 506, 860-876.	1.6	75
44	Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2005, 483, 164-191.	1.6	70
45	Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity. European Journal of Neuroscience, 2010, 31, 1043-1062.	2.6	70
46	Connectional and neurochemical subdivisions of the pulvinar in Cebus monkeys. Visual Neuroscience, 2001, 18, 25-41.	1.0	69
47	A Specialized Area in Limbic Cortex for Fast Analysis of Peripheral Vision. Current Biology, 2012, 22, 1351-1357.	3.9	65
48	A blueprint of mammalian cortical connectomes. PLoS Biology, 2019, 17, e2005346.	5.6	64
49	Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus). European Journal of Neuroscience, 2007, 25, 1780-1792.	2.6	62
50	The dorsomedial visual areas in New World and Old World monkeys: homology and function. European Journal of Neuroscience, 2001, 13, 421-427.	2.6	61
51	Pyramidal Cells, Patches, and Cortical Columns: a Comparative Study of Infragranular Neurons in TEO, TE, and the Superior Temporal Polysensory Area of the Macaque Monkey. Journal of Neuroscience, 2000, 20, RC117-RC117.	3.6	59
52	Comparison of Dendritic Fields of Layer III Pyramidal Neurons in Striate and Extrastriate Visual Areas of the Marmoset: a Lucifer Yellow Intracellular Injection Study. Cerebral Cortex, 1996, 6, 807-813.	2.9	58
53	Ambient Temperature Influences Australian Native Stingless Bee (Trigona carbonaria) Preference for Warm Nectar. PLoS ONE, 2010, 5, e12000.	2.5	58
54	Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey. NeuroReport, 1998, 9, 127-131.	1.2	55

#	Article	IF	CITATIONS
55	Timescales of Sensory- and Decision-Related Activity in the Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2010, 30, 14036-14045.	3.6	54
56	Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, pointâ€image size, and proportionality to retinal ganglion cell density. Journal of Comparative Neurology, 2013, 521, 1001-1019.	1.6	54
57	Topographic organisation of extrastriate areas in the flying fox: Implications for the evolution of mammalian visual cortex. Journal of Comparative Neurology, 1999, 411, 503-523.	1.6	53
58	Topographic and Laminar Maturation of Striate Cortex in Early Postnatal Marmoset Monkeys, as Revealed by Neurofilament Immunohistochemistry. Cerebral Cortex, 2005, 15, 740-748.	2.9	53
59	Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and) Tj ETQq1 1	0.784314 rg 1.6	gBT_/Overlock
60	Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus). Cerebral Cortex, 2019, 29, 3836-3863.	2.9	52
61	Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortices of the common marmoset (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2017, 525, 1421-1441.	1.6	51
62	A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. ELife, 2019, 8, .	6.0	51
63	Monocular focal retinal lesions induce short–term topographic plasticity in adult cat visual cortex. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 499-507.	2.6	50
64	Patterns of cortical input to the primary motor area in the marmoset monkey. Journal of Comparative Neurology, 2014, 522, 811-843.	1.6	49
65	The cortical motor system of the marmoset monkey (Callithrix jacchus). Neuroscience Research, 2015, 93, 72-81.	1.9	47
66	Retinal detachment induces massive immediate reorganization in visual cortex. NeuroReport, 1995, 6, 1349-1353.	1.2	46
67	Honeybees can recognise images of complex natural scenes for use as potential landmarks. Journal of Experimental Biology, 2008, 211, 1180-1186.	1.7	45
68	Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. Journal of Comparative Neurology, 2007, 500, 832-849.	1.6	44
69	Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation. PLoS ONE, 2012, 7, e48577.	2.5	44
70	Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex. Journal of Comparative Neurology, 2015, 523, 1222-1247.	1.6	44
71	Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella). Frontiers in Systems Neuroscience, 2014, 8, 123.	2.5	42
72	Rapid Adaptation Induces Persistent Biases in Population Codes for Visual Motion. Journal of Neuroscience, 2016, 36, 4579-4590.	3.6	42

#	Article	IF	CITATIONS
73	Visuotopic Organization of Primate Extrastriate Cortex. Cerebral Cortex, 1997, , 127-203.	0.6	40
74	Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). Brain Research Protocols, 2003, 11, 168-177.	1.6	39
75	Resolving the organization of the third tier visual cortex in primates: A hypothesis-based approach. Visual Neuroscience, 2015, 32, E010.	1.0	39
76	Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex ofCebus monkeys. Experimental Brain Research, 1992, 88, 249-264.	1.5	38
77	Retinotopic orgarnzation of the primary visual cortex of flying foxes (<i>Pteropus poliocephalus and) Tj ETQq1</i>	1 0.784314 1.6	4 rgBT /Overlo
78	Third tier ventral extrastriate cortex in the New World monkey, Cebus apella. Experimental Brain Research, 2000, 132, 287-305.	1.5	38
79	Subcortical projections to the frontal pole in the marmoset monkey. European Journal of Neuroscience, 2011, 34, 303-319.	2.6	37
80	Visually Evoked Responses in Extrastriate Area MT after Lesions of Striate Cortex in Early Life. Journal of Neuroscience, 2013, 33, 12479-12489.	3.6	37
81	Bee reverse-learning behavior and intra-colony differences: Simulations based on behavioral experiments reveal benefits of diversity. Ecological Modelling, 2014, 277, 119-131.	2.5	37
82	Structural Attributes and Principles of the Neocortical Connectome in the Marmoset Monkey. Cerebral Cortex, 2021, 32, 15-28.	2.9	37
83	Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex Journal of Physiology, 1995, 482, 589-608.	2.9	36
84	CLARIFYING HOMOLOGIES IN THE MAMMALIAN CEREBRAL CORTEX: THE CASE OF THE THIRD VISUAL AREA (V3). Clinical and Experimental Pharmacology and Physiology, 2005, 32, 327-339.	1.9	36
85	Working Memory in the Service of Executive Control Functions. Frontiers in Systems Neuroscience, 2015, 9, 166.	2.5	36
86	A collaborative resource platform for non-human primate neuroimaging. Neurolmage, 2021, 226, 117519.	4.2	36
87	Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm?. Cerebral Cortex, 2018, 28, 1700-1717.	2.9	35
88	Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. European Journal of Neuroscience, 2007, 25, 1767-1779.	2.6	34
89	Structure and function of the middle temporal visual area (MT) in the marmoset: Comparisons with the macaque monkey. Neuroscience Research, 2015, 93, 62-71.	1.9	34
90	Unidirectional monosynaptic connections from auditory areas to the primary visual cortex in the marmoset monkey. Brain Structure and Function, 2019, 224, 111-131.	2.3	34

22

#	Article	IF	CITATIONS
91	Robust Visual Responses and Normal Retinotopy in Primate Lateral Geniculate Nucleus following Long-term Lesions of Striate Cortex. Journal of Neuroscience, 2018, 38, 3955-3970.	3.6	33
92	Organization of visual cortex in the northern quoll, Dasyurus hallucatus: evidence for a homologue of the second visual area in marsupials. European Journal of Neuroscience, 1999, 11, 907-915.	2.6	32
93	Physiological Responses of New World Monkey V1 Neurons to Stimuli Defined by Coherent Motion. Cerebral Cortex, 2002, 12, 1132-1145.	2.9	32
94	Uniformity and diversity of response properties of neurons in the primary visual cortex: Selectivity for orientation, direction of motion, and stimulus size from center to far periphery. Visual Neuroscience, 2014, 31, 85-98.	1.0	29
95	Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. ENeuro, 2017, 4, ENEURO.0344-17.2017.	1.9	29
96	Organization of the Second Visual Area in the Megachiropteran Bat Pteropus. Cerebral Cortex, 1994, 4, 52-68.	2.9	27
97	Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys. Brain Structure and Function, 2017, 222, 3283-3293.	2.3	27
98	Unusual Pattern of Retinogeniculate Projections in the Controversial Primate <i>Tarsius</i> . Brain, Behavior and Evolution, 1996, 48, 121-129.	1.7	26
99	Effects of saccades on visual processing in primate MSTd. Vision Research, 2010, 50, 2683-2691.	1.4	26
100	Representation of central and peripheral vision in the primate cerebral cortex: Insights from studies of the marmoset brain. Neuroscience Research, 2015, 93, 47-61.	1.9	26
101	Thalamoâ€cortical projections to the macaque superior parietal lobule areas PEc and PE. Journal of Comparative Neurology, 2018, 526, 1041-1056.	1.6	26
102	Topography and extent of visual-field representation in the superior colliculus of the megachiropteran <i>Pteropus</i> . Visual Neuroscience, 1994, 11, 1037-1057.	1.0	25
103	Histologyâ€Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas. Neurolmage, 2021, 226, 117625.	4.2	25
104	Neurofilament protein expression in the geniculostriate pathway of a New World monkey (Callithrix) Tj ETQqO	0 0 rgBT /C	overlock 10 Tf
105	Single-unit responses to kinetic stimuli in New World monkey area V2: Physiological characteristics of cue-invariant neurones. Experimental Brain Research, 2005, 162, 100-108.	1.5	23
106	Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion. European Journal of Neuroscience, 2012, 36, 2063-2076.	2.6	22
107	Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Frontiers in Neuroscience, 2015, 9, 132.	2.8	22

108Direct current stimulation of prefrontal cortex modulates errorâ€induced behavioral adjustments.2.6108European Journal of Neuroscience, 2016, 44, 1856-1869.2.6

#	Article	IF	CITATIONS
109	Toward next-generation primate neuroscience: A collaboration-based strategic plan for integrative neuroimaging. Neuron, 2022, 110, 16-20.	8.1	22
110	Spatial Summation, End Inhibition and Side Inhibition in the Middle Temporal Visual Area (MT). Journal of Neurophysiology, 2007, 97, 1135-1148.	1.8	21
111	A simple method for creating wide-field visual stimulus for electrophysiology: Mapping and analyzing receptive fields using a hemispheric display. Journal of Vision, 2010, 10, 15-15.	0.3	21
112	Auditory cortex of the marmoset monkey – complex responses to tones and vocalizations under opiate anaesthesia in core and belt areas. European Journal of Neuroscience, 2013, 37, 924-941.	2.6	21
113	Thalamic projections to visual and visuomotor areas (V6 and V6A) in the Rostral Bank of the parieto-occipital sulcus of the Macaque. Brain Structure and Function, 2016, 221, 1573-1589.	2.3	21
114	Sensitivity of neurons in the middle temporal area of marmoset monkeys to random dot motion. Journal of Neurophysiology, 2017, 118, 1567-1580.	1.8	21
115	Brain Mapping: The (Un)Folding of Striate Cortex. Current Biology, 2012, 22, R1051-R1053.	3.9	20
116	Restoration of vision using wireless cortical implants: The Monash Vision Group project. , 2015, 2015, 1041-4.		20
117	Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex. Frontiers in Neural Circuits, 2018, 12, 93.	2.8	20
118	High-Expanding Regions in Primate Cortical Brain Evolution Support Supramodal Cognitive Flexibility. Cerebral Cortex, 2019, 29, 3891-3901.	2.9	20
119	Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus). Brain Research, 2003, 973, 142-145.	2.2	19
120	Supragranular pyramidal neurones in the medial posterior parietal cortex of the macaque monkey. NeuroReport, 1999, 10, 1925-1929.	1.2	18
121	Variation in the spatial relationship between parvalbumin immunoreactive interneurones and pyramidal neurones in rat somatosensory cortex. NeuroReport, 1999, 10, 2975-2979.	1.2	18
122	Neural basis of time changes during saccades. Current Biology, 2006, 16, R834-R836.	3.9	18
123	The case for a dorsomedial area in the primate â€~third-tier' visual cortex. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121372.	2.6	17
124	Neural plasticity following lesions of the primate occipital lobe: The marmoset as an animal model for studies of blindsight. Developmental Neurobiology, 2017, 77, 314-327.	3.0	17
125	Ipsilateral corticocortical projections to the primary and middle temporal visual areas of the primate cerebral cortex: area-specific variations in the morphology of connectionally identified pyramidal cells. European Journal of Neuroscience, 2006, 23, 3337-3345.	2.6	16
126	The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?. Cerebral Cortex, 2015, 25, 2556-2565.	2.9	16

#	Article	IF	CITATIONS
127	Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nature Communications, 2019, 10, 941.	12.8	16
128	Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cerebral Cortex, 2019, 29, 1473-1495.	2.9	16
129	Investigating the sex-dependent effects of prefrontal cortex stimulation on response execution and inhibition. Biology of Sex Differences, 2021, 12, 47.	4.1	16
130	Adaptation to direction statistics modulates perceptual discrimination. Journal of Vision, 2012, 12, 32-32.	0.3	15
131	Adaptation to Speed in Macaque Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2013, 33, 4359-4368.	3.6	15
132	Relationship between Size Summation Properties, Contrast Sensitivity and Response Latency in the Dorsomedial and Middle Temporal Areas of the Primate Extrastriate Cortex. PLoS ONE, 2013, 8, e68276.	2.5	15
133	Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7713-7718.	7.1	14
134	Age-related plasticity of the axon initial segment of cortical pyramidal cells in marmoset monkeys. Neurobiology of Aging, 2017, 57, 95-103.	3.1	14
135	Correlated Variability in the Neurons With the Strongest Tuning Improves Direction Coding. Cerebral Cortex, 2019, 29, 615-626.	2.9	14
136	A twisted visual field map in the primate dorsomedial cortex predicted by topographic continuity. Science Advances, 2020, 6, .	10.3	14
137	Tissue response to a chronically implantable wireless, intracortical visual prosthesis (Gennaris) Tj ETQq1 1 0.784	814.gBT/	Overlock 10
138	Monash Vision Group's Gennaris Cortical Implant for Vision Restoration. , 2017, , 215-225.		13
139	Orientation selectivity in rat primary visual cortex emerges earlier with lowâ€contrast and highâ€luminance stimuli. European Journal of Neuroscience, 2016, 44, 2759-2773.	2.6	12
140	The impact of early environmental interventions on structural plasticity of the axon initial segment in neocortex. Developmental Psychobiology, 2017, 59, 39-47.	1.6	12
141	First- and second-order stimulus length selectivity in New World monkey striate cortex. European Journal of Neuroscience, 2004, 19, 169-180.	2.6	11
142	Visual thalamocortical projections in the flying fox: Parallel pathways to striate and extrastriate areas. Neuroscience, 2005, 130, 497-511.	2.3	11
143	Claustral afferents of superior parietal areas PEc and PE in the macaque. Journal of Comparative Neurology, 2017, 525, 1475-1488.	1.6	11
144	Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets. European Journal of Neuroscience, 2019, 50, 4004-4017.	2.6	11

#	Article	IF	CITATIONS
145	In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Structure and Function, 2019, 224, 1957-1969.	2.3	11
146	Altered Sensitivity to Motion of Area MT Neurons Following Long-Term V1 Lesions. Cerebral Cortex, 2020, 30, 451-464.	2.9	11
147	Brain connectomes come of age. Current Opinion in Neurobiology, 2020, 65, 152-161.	4.2	11
148	Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex. Journal of Physiology, 1998, 513, 507-519.	2.9	10
149	Thalamic afferents emphasize the different functions of macaque precuneate areas. Brain Structure and Function, 2020, 225, 853-870.	2.3	10
150	Visual responses in the dorsolateral frontal cortex of marmoset monkeys. Journal of Neurophysiology, 2021, 125, 296-304.	1.8	10
151	Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight. Brain Structure and Function, 2021, 226, 2763-2775.	2.3	10
152	Somatotopic organization and cortical projections of the ventrobasal complex of the flying fox: an "inverted" wing representation in the thalamus. Somatosensory & Motor Research, 2001, 18, 19-30.	0.9	9
153	An architectonic comparison of the ventrobasal complex of two Megachiropteran and one Microchiropteran bat: implications for the evolution of Chiroptera. Somatosensory & Motor Research, 2001, 18, 131-140.	0.9	9
154	Topographic Organization of the 'Third-Tier' Dorsomedial Visual Cortex in the Macaque. Journal of Neuroscience, 2019, 39, 5311-5325.	3.6	9
155	Understanding Sensory Information Processing Through Simultaneous Multi-area Population Recordings. Frontiers in Neural Circuits, 2018, 12, 115.	2.8	9
156	Weighting neurons by selectivity produces near-optimal population codes. Journal of Neurophysiology, 2019, 121, 1924-1937.	1.8	8
157	Sensitivity to Vocalization Pitch in the Caudal Auditory Cortex of the Marmoset: Comparison of Core and Belt Areas. Frontiers in Systems Neuroscience, 2019, 13, 5.	2.5	8
158	Internal Subdivisions of the Marmoset Claustrum Complex: Identification by Myeloarchitectural Features and High Field Strength Imaging. Frontiers in Neuroanatomy, 2019, 13, 96.	1.7	8
159	Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network. Brain Structure and Function, 2021, 226, 3007-3022.	2.3	8
160	The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neuroscience and Biobehavioral Reviews, 2022, 138, 104692.	6.1	8
161	Remodeling of lateral geniculate nucleus projections to extrastriate area MT following long-term lesions of striate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
162	Long-term sensorimotor adaptation in the ocular following system of primates. PLoS ONE, 2017, 12, e0189030.	2.5	6

#	Article	IF	CITATIONS
163	Negative Emotional Stimuli Enhance Conflict Resolution Without Altering Arousal. Frontiers in Human Neuroscience, 2019, 13, 282.	2.0	6
164	Neural coding of action in three dimensions: Task―and timeâ€invariant reference frames for visuospatial and motorâ€related activity in parietal area V6A. Journal of Comparative Neurology, 2020, 528, 3108-3122.	1.6	6
165	Volume reduction without neuronal loss in the primate pulvinar complex following striate cortex lesions. Brain Structure and Function, 2021, 226, 2417-2430.	2.3	6
166	Intracortical current steering shifts the location of evoked neural activity. Journal of Neural Engineering, 2022, 19, 035003.	3.5	6
167	Auditory motion does not modulate spiking activity in the middle temporal and medial superior temporal visual areas. European Journal of Neuroscience, 2018, 48, 2013-2029.	2.6	5
168	Panoptic Neuroanatomy: Digital Microscopy of Whole Brains and Brain-Wide Circuit Mapping. Brain, Behavior and Evolution, 2013, 81, 203-205.	1.7	4
169	Natural motion trajectory enhances the coding of speed in primate extrastriate cortex. Scientific Reports, 2016, 6, 19739.	3.3	4
170	Distributed representation of vocalization pitch in marmoset primary auditory cortex. European Journal of Neuroscience, 2019, 49, 179-198.	2.6	4
171	Neuronal density and expression of calciumâ€binding proteins across the layers of the superior colliculus in the common marmoset (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2022, 530, 2966-2976.	1.6	4
172	Distribution of cytochrome oxidaseâ€rich patches in human primary visual cortex. Journal of Comparative Neurology, 2019, 527, 614-624.	1.6	3
173	Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cerebral Cortex, 2021, 32, 41-62.	2.9	3
174	Learning to navigate in a three-dimensional world: From bees to primates. Behavioral and Brain Sciences, 2013, 36, 550-550.	0.7	2
175	Visual response characteristics of neurons in the second visual area of marmosets. Neural Regeneration Research, 2021, 16, 1871.	3.0	2
176	Maps of the Visual Field in the Cerebral Cortex of Primates. Frontiers in Neuroscience, 2003, , .	0.0	2
177	NaÃ ⁻ ve and Experienced Honeybee Foragers Learn Normally Configured Flowers More Easily Than Non-configured or Highly Contrasted Flowers. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
178	Dimension of visual information interacts with working memory in monkeys and humans. Scientific Reports, 2022, 12, 5335.	3.3	2
179	Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates. Behavioral and Brain Sciences, 2014, 37, 571-572.	0.7	1

180 Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 T

#	Article	IF	CITATIONS
181	Understanding structure–function relationships in the mammalian visual system: part one. Brain Structure and Function, 2021, 226, 2741-2744.	2.3	1
182	Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations. Nature Precedings, 2012, , .	0.1	0
183	Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. Journal of Comparative Neurology, 2016, 524, Spc1-Spc1.	1.6	0
184	Noisy decision thresholds can account for suboptimal detection of low coherence motion. Scientific Reports, 2016, 6, 18700.	3.3	0
185	Dorsomedial Area. , 2017, , 1-7.		0
186	Understanding structure–function relationships in the mammalian visual system: part two. Brain Structure and Function, 2022, , .	2.3	0
187	Dorsomedial Area. , 2022, , 2141-2147.		0