
Nikolaos Dimitratos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective decomposition of hydrazine over metal free carbonaceous materials. Physical Chemistry Chemical Physics, 2022, 24, 3017-3029.	2.8	3
2	Furfural Adsorption and Hydrogenation at the Oxideâ€Metal Interface: Evidence of the Support Influence on the Selectivity of Iridiumâ€Based Catalysts. ChemCatChem, 2022, 14, .	3.7	7
3	Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 1655-1665.	3.7	11
4	Hydrogenation of carbon dioxide (CO ₂) to fuels in microreactors: a review of set-ups and value-added chemicals production. Reaction Chemistry and Engineering, 2022, 7, 795-812.	3.7	7
5	Effect of the Colloidal Preparation Method for Supported Preformed Colloidal Au Nanoparticles for the Liquid Phase Oxidation of 1,6-Hexanediol to Adipic Acid. Catalysts, 2022, 12, 196.	3.5	11
6	A comparative study on the stability of the furfural molecule on the low index Ni, Pd and Pt surfaces. Royal Society Open Science, 2022, 9, 211516.	2.4	4
7	Temperature-Dependent Activity of Cold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. Catalysts, 2022, 12, 323.	3.5	5
8	A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle. Energies, 2022, 15, 3044.	3.1	11
9	Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528, 112438.	2.0	3
10	Synthesis of palladium-rhodium bimetallic nanoparticles for formic acid dehydrogenation. Journal of Energy Chemistry, 2021, 52, 301-309.	12.9	31
11	Continuous-Flow Methyl Methacrylate Synthesis over Gallium-Based Bifunctional Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1790-1803.	6.7	16
12	Decomposition of Additive-Free Formic Acid Using a Pd/C Catalyst in Flow: Experimental and CFD Modelling Studies. Catalysts, 2021, 11, 341.	3.5	15
13	Catalytic Transformation of Renewables (Olefin, Bio-Sourced, et al.). Catalysts, 2021, 11, 364.	3.5	Ο
14	Effect of Polyvinyl Alcohol Ligands on Supported Gold Nano-Catalysts: Morphological and Kinetics Studies. Nanomaterials, 2021, 11, 879.	4.1	14
15	A Career in Catalysis: Graham J. Hutchings. ACS Catalysis, 2021, 11, 5916-5933.	11.2	2
16	Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity. Nanomaterials, 2021, 11, 1340.	4.1	15
17	Methane Oxidation to Methanol in Water. Accounts of Chemical Research, 2021, 54, 2614-2623.	15.6	69
18	Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: Effect of support functionalization. Catalysis Today, 2021, 382, 61-70.	4.4	16

#	Article	lF	CITATIONS
19	Disclosing the Role of Gold on Palladium – Gold Alloyed Supported Catalysts in Formic Acid Decomposition. ChemCatChem, 2021, 13, 4210-4222.	3.7	16
20	Experimental and Process Modelling Investigation of the Hydrogen Generation from Formic Acid Decomposition Using a Pd/Zn Catalyst. Applied Sciences (Switzerland), 2021, 11, 8462.	2.5	7
21	On the role of bismuth as modifier in AuPdBi catalysts: Effects on liquid-phase oxidation and hydrogenation reactions. Catalysis Communications, 2021, 158, 106340.	3.3	4
22	Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO ₂ . ChemCatChem, 2021, 13, 5121-5133.	3.7	11
23	Plasmonic Oxidation of Glycerol Using Au/TiO2 Catalysts Prepared by Sol-Immobilisation. Catalysis Letters, 2020, 150, 49-55.	2.6	8
24	Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemNanoMat, 2020, 6, 420-426.	2.8	17
25	Role of defects in carbon materials during metal-free formic acid dehydrogenation. Nanoscale, 2020, 12, 22768-22777.	5.6	19
26	The Effect of Noble Metal (M: Ir, Pt, Pd) on M/Ce2O3-γ-Al2O3 Catalysts for Hydrogen Production via the Steam Reforming of Glycerol. Catalysts, 2020, 10, 790.	3.5	18
27	Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology, 2020, 10, 5935-5944.	4.1	21
28	Optimization of sol-immobilized bimetallic Au–Pd/TiO ₂ catalysts: reduction of 4-nitrophenol to 4-aminophenol for wastewater remediation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200057.	3.4	6
29	Octane isomer dynamics in H-ZSM-5 as a function of Si/Al ratio: a quasi-elastic neutron scattering study. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200063.	3.4	2
30	Scale-Up of Cluster Beam Deposition to the Gram Scale with the Matrix Assembly Cluster Source for Heterogeneous Catalysis (Catalytic Ozonation of Nitrophenol in Aqueous Solution). ACS Applied Materials & Interfaces, 2020, 12, 24877-24882.	8.0	15
31	Preformed Pd-Based Nanoparticles for the Liquid Phase Decomposition of Formic Acid: Effect of Stabiliser, Support and Au–Pd Ratio. Applied Sciences (Switzerland), 2020, 10, 1752.	2.5	10
32	Effect of Carbon Support, Capping Agent Amount, and Pd NPs Size for Bio-Adipic Acid Production from Muconic Acid and Sodium Muconate. Nanomaterials, 2020, 10, 505.	4.1	11
33	Mechanistic study of hydrazine decomposition on Ir(111). Physical Chemistry Chemical Physics, 2020, 22, 3883-3896.	2.8	24
34	DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 4781-4790.	3.1	4
35	Dual-Site-Mediated Hydrogenation Catalysis on Pd/NiO: Selective Biomass Transformation and Maintenance of Catalytic Activity at Low Pd Loading. ACS Catalysis, 2020, 10, 5483-5492.	11.2	52
36	Improved Catalytic Transfer Hydrogenation of Levulinate Esters with Alcohols over ZrO2 Catalyst. , 2020, 2, .		2

3

#	Article	IF	CITATIONS
37	Promotion Mechanisms of Au Supported on TiO ₂ in Thermal- and Photocatalytic Glycerol Conversion. Journal of Physical Chemistry C, 2019, 123, 19734-19741.	3.1	16
38	Tandem Hydrogenation/Hydrogenolysis of Furfural to 2-Methylfuran over a Fe/Mg/O Catalyst: Structure–Activity Relationship. Catalysts, 2019, 9, 895.	3.5	18
39	Pt and Pt/Sn carbonyl clusters as precursors for the synthesis of supported metal catalysts for the base-free oxidation of HMF. Applied Catalysis A: General, 2019, 588, 117279.	4.3	34
40	Extracting structural information of Au colloids at ultra-dilute concentrations: identification of growth during nanoparticle immobilization. Nanoscale Advances, 2019, 1, 2546-2552.	4.6	2
41	Bio Adipic Acid Production from Sodium Muconate and Muconic Acid: A Comparison of two Systems. ChemCatChem, 2019, 11, 3075-3084.	3.7	14
42	AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. Green Chemistry, 2019, 21, 4090-4099.	9.0	62
43	A study of the oxidehydration of 1,2-propanediol to propanoic acid with bifunctional catalysts. Applied Catalysis A: General, 2019, 582, 117102.	4.3	7
44	Gas-Phase Catalytic Transfer Hydrogenation of Methyl Levulinate with Ethanol over ZrO ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 8317-8330.	6.7	36
45	Metal-Support Cooperative Effects in Au/VPO for the Aerobic Oxidation of Benzyl Alcohol to Benzyl Benzoate. Nanomaterials, 2019, 9, 299.	4.1	10
46	High pressure CO2 photoreduction using Au/TiO2: unravelling the effect of co-catalysts and of titania polymorphs. Catalysis Science and Technology, 2019, 9, 2253-2265.	4.1	34
47	Synthesis of highly uniform and composition-controlled gold–palladium supported nanoparticles in continuous flow. Nanoscale, 2019, 11, 8247-8259.	5.6	35
48	Preformed Au colloidal nanoparticles immobilised on NiO as highly efficient heterogeneous catalysts for reduction of 4-nitrophenol to 4-aminophenol. Journal of Environmental Chemical Engineering, 2019, 7, 103381.	6.7	12
49	The Effect of Carbon Nanofibers Surface Properties in Hydrogenation and Dehydrogenation Reactions. Applied Sciences (Switzerland), 2019, 9, 5061.	2.5	6
50	Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis, 2019, 2, 873-881.	34.4	183
51	Valorisation of Biomass Derived Furfural and Levulinic Acid by Highly Efficient Pd@ND Catalyst. Energy Technology, 2019, 7, 269-276.	3.8	12
52	Steam reforming of ethanol over Ni/MgAl2O4 catalysts. International Journal of Hydrogen Energy, 2019, 44, 952-964.	7.1	67
53	Preparation of bifunctional Au-Pd/TiO2 catalysts and research on methanol liquid phase one-step oxidation to methyl formate. Catalysis Today, 2018, 316, 206-213.	4.4	13
54	Cinnamaldehyde hydrogenation using Au–Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology, 2018, 8, 1677-1685.	4.1	46

#	Article	IF	CITATIONS
55	Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies. Topics in Catalysis, 2018, 61, 254-266.	2.8	68
56	An investigation on AuPt and AuPt-Bi on granular carbon as catalysts for the oxidation of glycerol under continuous flow conditions. Catalysis Today, 2018, 308, 50-57.	4.4	25
57	Supported metal nanoparticles with tailored catalytic properties through sol-immobilisation: applications for the hydrogenation of nitrophenols. Faraday Discussions, 2018, 208, 443-454.	3.2	13
58	Surface Probing by Spectroscopy on Titania-Supported Gold Nanoparticles for a Photoreductive Application. Catalysts, 2018, 8, 623.	3.5	13
59	Hydrogen production from formic acid decomposition in the liquid phase using Pd nanoparticles supported on CNFs with different surface properties. Sustainable Energy and Fuels, 2018, 2, 2705-2716.	4.9	37
60	Controlling the Incorporation of Phosphorus Functionalities on Carbon Nanofibers: Effects on the Catalytic Performance of Fructose Dehydration. Journal of Carbon Research, 2018, 4, 9.	2.7	13
61	Catalytic Performances of Au–Pt Nanoparticles on Phosphorous Functionalized Carbon Nanofibers towards HMF Oxidation. Journal of Carbon Research, 2018, 4, 48.	2.7	8
62	Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base. Catalysts, 2018, 8, 54.	3.5	23
63	Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. Journal of Carbon Research, 2018, 4, 26.	2.7	13
64	Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. Applied Catalysis B: Environmental, 2018, 238, 618-628.	20.2	58
65	Tandem Site- and Size-Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catalysis, 2017, 7, 2266-2274.	11.2	113
66	Catalytic formation of C(sp ³)–F bonds via decarboxylative fluorination with mechanochemically-prepared Ag ₂ O/TiO ₂ heterogeneous catalysts. RSC Advances, 2017, 7, 30185-30190.	3.6	11
67	Highly Active Gold and Gold–Palladium Catalysts Prepared by Colloidal Methods in the Absence of Polymer Stabilizers. ChemCatChem, 2017, 9, 2914-2918.	3.7	17
68	The adsorption of Cu on the CeO ₂ (110) surface. Physical Chemistry Chemical Physics, 2017, 19, 27191-27203.	2.8	17
69	Aqueous Au-Pd colloids catalyze selective CH ₄ oxidation to CH ₃ OH with O ₂ under mild conditions. Science, 2017, 358, 223-227.	12.6	478
70	Transfer Dehydrogenation of 1-Phenylethanol Over Pd/C Under Mild Conditions: Effect of Reaction Conditions and Optimization of Catalytic Performance. Catalysis Letters, 2017, 147, 2372-2384.	2.6	3
71	The Lowâ€Temperature Oxidation of Propane by using H ₂ O ₂ and Fe/ZSMâ€5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. ChemCatChem, 2017, 9, 642-650.	3.7	16
72	Enhanced Activity of Au/NiO Nanohybrids for the Reductive Amination of Benzyl Alcohol. Materials, 2017, 10, 1435.	2.9	3

#	Article	IF	CITATIONS
73	Electron Microscopy Investigations of Precious Metal Catalysts: Towards Controlled Synthesis of Ultra-Small Nanoparticles. Microscopy and Microanalysis, 2017, 23, 1854-1855.	0.4	0
74	Spectroscopic Investigation of Titania‣upported Gold Nanoparticles Prepared by a Modified Deposition/Precipitation Method for the Oxidation of CO. ChemCatChem, 2016, 8, 2136-2145.	3.7	11
75	The adsorbed state of a thiol on palladium nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 17265-17271.	2.8	6
76	Methanol diffusion in zeolite HY: a combined quasielastic neutron scattering and molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2016, 18, 17294-17302.	2.8	38
77	Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343, 133-146.	6.2	359
78	Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General, 2016, 518, 213-220.	4.3	17
79	The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science and Technology, 2016, 6, 7521-7531.	4.1	12
80	Optimised hydrogen production by aqueous phase reforming of glycerol on Pt/Al2O3. International Journal of Hydrogen Energy, 2016, 41, 18441-18450.	7.1	49
81	Catalytic decomposition of carbon-based liquid-phase chemical hydrogen storage materials for hydrogen generation under mild conditions. Applied Petrochemical Research, 2016, 6, 269-277.	1.3	5
82	Mechanistic Insight into the Interaction Between a Titanium Dioxide Photocatalyst and Pd Cocatalyst for Improved Photocatalytic Performance. ACS Catalysis, 2016, 6, 4239-4247.	11.2	50
83	Characterisation of gold catalysts. Chemical Society Reviews, 2016, 45, 4953-4994.	38.1	140
84	Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol. Applied Catalysis A: General, 2016, 514, 267-275.	4.3	37
85	Depressing the hydrogenation and decomposition reaction in H ₂ O ₂ synthesis by supporting AuPd on oxygen functionalized carbon nanofibers. Catalysis Science and Technology, 2016, 6, 694-697.	4.1	20
86	Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science and Technology, 2016, 6, 3410-3418.	4.1	64
87	Valorisation of Glycerol to Fine Chemicals and Fuels. Advances in Chemical and Materials Engineering Book Series, 2016, , 352-384.	0.3	1
88	AuPt Alloy on TiO ₂ : A Selective and Durable Catalyst for <scp>l</scp> â€6orbose Oxidation to 2â€Ketoâ€Gulonic Acid. ChemSusChem, 2015, 8, 4189-4194.	6.8	14
89	Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science and Technology, 2015, 5, 3953-3959.	4.1	3
90	ldentification of Active and Spectator Sn Sites in Snâ€Ĵ² Following Solidâ€6tate Stannation, and Consequences for Lewis Acid Catalysis. ChemCatChem, 2015, 7, 3322-3331.	3.7	83

#	Article	IF	CITATIONS
91	MAXNET Energy – Focusing Research in Chemical Energy Conversion on the Electrocatlytic Oxygen Evolution. Green, 2015, 5, .	0.4	3
92	Biomimetic Oxidation with Feâ€ZSMâ€5 and H ₂ O ₂ ? Identification of an Active, Extraâ€Framework Binuclear Core and an Fe ^{III} OOH Intermediate with Resonanceâ€Enhanced Raman Spectroscopy. ChemCatChem, 2015, 7, 434-440.	3.7	49
93	Methyl Formate Formation from Methanol Oxidation Using Supported Gold–Palladium Nanoparticles. ACS Catalysis, 2015, 5, 637-644.	11.2	78
94	Photocatalytic hydrogen production by reforming of methanol using Au/TiO ₂ , Ag/TiO ₂ and Au-Ag/TiO ₂ catalysts. Journal of Lithic Studies, 2015, 1, 35-43.	0.5	15
95	Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. ACS Catalysis, 2015, 5, 4377-4384.	11.2	45
96	Glycerol Oxidation Using Gold-Containing Catalysts. Accounts of Chemical Research, 2015, 48, 1403-1412.	15.6	265
97	Tailoring the selectivity of glycerol oxidation by tuning the acid–base properties of Au catalysts. Catalysis Science and Technology, 2015, 5, 1126-1132.	4.1	78
98	Supported Metal Nanoparticles in Liquid-Phase Oxidation Reactions. , 2014, , 631-678.		3
99	Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics, 2014, 16, 26638-26644.	2.8	17
100	Comparison of Au and TiO2 based catalysts for the synthesis of chalcogenide nanowires. Applied Physics Letters, 2014, 104, 253103.	3.3	8
101	Assessing and Controlling the Size, Morphology and Composition of Supported Bimetallic Catalyst Nanoparticles. Microscopy and Microanalysis, 2014, 20, 74-75.	0.4	1
102	Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. Journal of Catalysis, 2014, 310, 10-15.	6.2	112
103	Designer Titania-Supported Au–Pd Nanoparticles for Efficient Photocatalytic Hydrogen Production. ACS Nano, 2014, 8, 3490-3497.	14.6	279
104	Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO ₂ Nanowire Microspheres. Chemistry - A European Journal, 2014, 20, 1701-1710.	3.3	40
105	Molybdenum Oxide on Fe ₂ O ₃ Core–Shell Catalysts: Probing the Nature of the Structural Motifs Responsible for Methanol Oxidation Catalysis. ACS Catalysis, 2014, 4, 243-250.	11.2	85
106	High Activity Redox Catalysts Synthesized by Chemical Vapor Impregnation. ACS Nano, 2014, 8, 957-969.	14.6	25
107	The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation. Journal of Physical Chemistry C, 2014, 118, 26155-26161.	3.1	56
108	Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions, 2014, 43, 14976-14982.	3.3	9

#	Article	IF	CITATIONS
109	Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science, 2014, 5, 3603-3616.	7.4	45
110	Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au–Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications, 2014, 50, 12612-12614.	4.1	42
111	Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research, 2014, 4, 85-94.	1.3	13
112	Partial Oxidation of Ethane to Oxygenates Using Fe- and Cu-Containing ZSM-5. Journal of the American Chemical Society, 2013, 135, 11087-11099.	13.7	83
113	Systematic Study of the Oxidation of Methane Using Supported Gold Palladium Nanoparticles Under Mild Aqueous Conditions. Topics in Catalysis, 2013, 56, 1843-1857.	2.8	35
114	Selective catalytic oxidation using supported gold–platinum and palladium–platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics, 2013, 15, 10636.	2.8	37
115	Effect of heat treatment on Au–Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcoholoxidation. Catalysis Science and Technology, 2013, 3, 308-317.	4.1	64
116	Oxidation of Methane to Methanol with Hydrogen Peroxide Using Supported Gold–Palladium Alloy Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 1280-1284.	13.8	239
117	Elucidation and Evolution of the Active Component within Cu/Fe/ZSM-5 for Catalytic Methane Oxidation: From Synthesis to Catalysis. ACS Catalysis, 2013, 3, 689-699.	11.2	117
118	The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today, 2013, 203, 139-145.	4.4	58
119	Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au–Pd–Pt nanoparticles. Faraday Discussions, 2013, 162, 365.	3.2	65
120	Aqueous-Phase Methane Oxidation over Fe-MFI Zeolites; Promotion through Isomorphous Framework Substitution. ACS Catalysis, 2013, 3, 1835-1844.	11.2	99
121	Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series, 2012, 371, 012028.	0.4	4
122	Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today, 2012, 195, 120-126.	4.4	124
123	The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis, 2012, 55, 1283-1288.	2.8	33
124	Catalytic and Mechanistic Insights of the Lowâ€Temperature Selective Oxidation of Methane over Cuâ€Promoted Feâ€ZSMâ€5. Chemistry - A European Journal, 2012, 18, 15735-15745.	3.3	102
125	Gold catalysis: helping create a sustainable future. Applied Petrochemical Research, 2012, 2, 7-14.	1.3	7
126	Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science and Technology, 2012, 2, 97-104.	4.1	32

#	Article	IF	CITATIONS
127	Gold, palladium and gold–palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science and Technology, 2012, 2, 1914.	4.1	52
128	Promotion of Phenol Photodecomposition over TiO ₂ Using Au, Pd, and Au–Pd Nanoparticles. ACS Nano, 2012, 6, 6284-6292.	14.6	252
129	Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 2012, 41, 8099.	38.1	971
130	Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science, 2012, 3, 20-44.	7.4	224
131	Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copperâ€Promoted Feâ€ZSMâ€5. Angewandte Chemie - International Edition, 2012, 51, 5129-5133.	13.8	492
132	Involvement of Surfaceâ€Bound Radicals in the Oxidation of Toluene Using Supported Auâ€Pd Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 5981-5985.	13.8	89
133	Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis, 2012, 290, 177-185.	6.2	30
134	Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem, 2012, 5, 125-131.	6.8	56
135	Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chemistry, 2011, 13, 2091.	9.0	242
136	Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions, 2011, 40, 3927.	3.3	125
137	Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions, 2011, 152, 63.	3.2	115
138	Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry, 2011, 3, 551-556.	13.6	517
139	Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles. Science, 2011, 331, 195-199.	12.6	708
140	Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Baseâ€Free Conditions. Angewandte Chemie - International Edition, 2011, 50, 10136-10139.	13.8	212
141	Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 2011, 164, 315-319.	4.4	70
142	The mechanism of surface doping in vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride: The role of Au promoter. Catalysis Today, 2011, 169, 200-206.	4.4	28
143	Reactivity studies of Au–Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General, 2011, 391, 400-406.	4.3	62
144	Pd on carbon nanotubes for liquid phase alcohol oxidation. Catalysis Today, 2010, 150, 8-15.	4.4	142

#	Article	IF	CITATIONS
145	Selective Oxidation using Supported Gold and Gold Palladium Nanoparticles prepared by Sol-Immobilisation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2034-2034.	1.2	1
146	Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Auâ^'Pd Catalysts Prepared by Sol Immobilization. Langmuir, 2010, 26, 16568-16577.	3.5	201
147	Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. ChemSusChem, 2009, 2, 1145-1151.	6.8	78
148	Liquid Phase Oxidation of Glycerol Using a Single Phase (Au–Pd) Alloy Supported on Activated Carbon: Effect of Reaction Conditions. Catalysis Letters, 2009, 133, 334-340.	2.6	54
149	Green Catalysis with Alternative Feedstocks. Topics in Catalysis, 2009, 52, 258-268.	2.8	73
150	Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today, 2009, 145, 169-175.	4.4	62
151	Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics, 2009, 11, 5142.	2.8	138
152	Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry, 2009, 11, 1209.	9.0	97
153	Oxidation of glycerol using gold–palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics, 2009, 11, 4952.	2.8	144
154	Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry, 2009, 11, 1037.	9.0	61
155	Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics, 2008, 10, 1921.	2.8	136
156	Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today, 2007, 122, 317-324.	4.4	150
157	Catalytic performance of gold catalysts in the total oxidation of VOCs. Gold Bulletin, 2007, 40, 67-72.	2.7	29
158	Effect of Au in Cs2.5H1.5PVMo11O40 and Cs2.5H1.5PVMo11O40/Au/TiO2 catalysts in the gas phase oxidation of propylene. Catalysis Today, 2007, 122, 307-316.	4.4	15
159	Effect of BrÃ,nsted acidity in propane oxidation over Cs2.5H1.5PV1Mo11â^W O40 polyoxometallate compounds. Catalysis Communications, 2006, 7, 811-818.	3.3	15
160	Gold on titania: Effect of preparation method in the liquid phase oxidation. Applied Catalysis A: General, 2006, 311, 185-192.	4.3	126
161	Effect of Particle Size on Monometallic and Bimetallic (Au,Pd)/C on the Liquid Phase Oxidation of Glycerol. Catalysis Letters, 2006, 108, 147-153.	2.6	188
162	Study of Ga modified Cs2.5H1.5PV1Mo11O40 heteropolyoxometallates for propane selective oxidation. Journal of Molecular Catalysis A, 2006, 255, 184-192.	4.8	18

#	Article	IF	CITATIONS
163	Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. Journal of Molecular Catalysis A, 2006, 256, 21-28.	4.8	85
164	Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. Journal of Catalysis, 2006, 244, 113-121.	6.2	274
165	Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method. Applied Catalysis A: General, 2005, 291, 210-214.	4.3	143
166	Gold based bimetallic catalysts for liquid phase applications. Gold Bulletin, 2005, 38, 73-77.	2.7	22
167	Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catalysis Today, 2005, 102-103, 203-212.	4.4	304
168	Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol. Catalysis Letters, 2005, 99, 181-185.	2.6	91
169	Role of acid and redox properties on propane oxidative dehydrogenation over polyoxometallates. Catalysis Today, 2003, 81, 561-571.	4.4	26
170	Properties of Cs2.5 salts of transition metal M substituted Keggin-type M1â^'PV1M Mo11â^'O40 heteropolyoxometallates in propane oxidation. Applied Catalysis A: General, 2003, 256, 251-263.	4.3	41
171	Oxidation of alcohols using supported gold and gold–palladium nanoparticles. Faraday Discussions, 0, 145, 341-356.	3.2	128

172 Systematic Study for the Preparation of Au Based Catalyst for the Glucose Oxidation. , 0, , .