
Christian Kurts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of COVID-19 vaccination on the use of PD-1 inhibitor in treating patients with cancer: a real-world study. , 2022, 10, e004157.		19
2	Antibody cross-reactivity between casein and myelin-associated glycoprotein results in central nervous system demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117034119.	3.3	9
3	Generation of an alpaca serum that induces immune-mediated crescentic glomerulonephritis in mice. Journal of Immunological Methods, 2022, 507, 113310.	0.6	0
4	Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. Journal of Molecular Medicine, 2021, 99, 335-348.	1.7	83
5	CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in mice upon transverse aortic constriction. PLoS ONE, 2021, 16, e0243788.	1.1	12
6	Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell and Tissue Research, 2021, 385, 335-344.	1.5	28
7	Sodium and its manifold impact on our immune system. Trends in Immunology, 2021, 42, 469-479.	2.9	46
8	Renal Denervation Exacerbates LPS- and Antibody-induced Acute Kidney Injury, but Protects from Pyelonephritis in Mice. Journal of the American Society of Nephrology: JASN, 2021, 32, 2445-2453.	3.0	5
9	<scp>CD8</scp> ⁺ T‣ymphocyte–Driven Limbic Encephalitis Results in Temporal Lobe Epilepsy. Annals of Neurology, 2021, 89, 666-685.	2.8	18
10	New Aspects of Kidney Fibrosis–From Mechanisms of Injury to Modulation of Disease. Frontiers in Medicine, 2021, 8, 814497.	1.2	21
11	Butyrophilin 2A1 is essential for phosphoantigen reactivity by $\hat{I}^3\hat{I}$ T cells. Science, 2020, 367, .	6.0	275
12	Splenic Red Pulp Macrophages Cross-Prime Early Effector CTL That Provide Rapid Defense against Viral Infections. Journal of Immunology, 2020, 204, 87-100.	0.4	22
13	Pathogen-induced tissue-resident memory T _H 17 (T _{RM} 17) cells amplify autoimmune kidney disease. Science Immunology, 2020, 5, .	5.6	58
14	Drawing a single-cell landscape of the human kidney in (pseudo)-space and time. Kidney International, 2020, 97, 842-844.	2.6	2
15	Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature Reviews Nephrology, 2020, 16, 391-407.	4.1	60
16	NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biology, 2020, 18, e3000722.	2.6	22
17	A high-salt diet compromises antibacterial neutrophil responses through hormonal perturbation. Science Translational Medicine, 2020, 12, .	5.8	45
18	Unraveling the Complexity of the Renal Mononuclear Phagocyte System by Genetic Cell Lineage Tracing. Journal of the American Society of Nephrology: JASN, 2020, 31, 233-235.	3.0	3

#	Article	IF	CITATIONS
19	Salt, inflammation, ILâ€17 and hypertension. British Journal of Pharmacology, 2019, 176, 1853-1863.	2.7	53
20	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
21	223.â€∱NUCLEIC ACID RECOGNITION THROUGH SPECIFIC RECEPTORS AGGRAVATES ANCA-ASSOCIATED VASCULITIS IN THE LUNG. Rheumatology, 2019, 58, .	0.9	Ο
22	Deubiquitinating Enzyme UCH-L1 Promotes Dendritic Cell Antigen Cross-Presentation by Favoring Recycling of MHC Class I Molecules. Journal of Immunology, 2019, 203, 1730-1742.	0.4	10
23	Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nature Communications, 2019, 10, 2352.	5.8	68
24	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	2.6	35
25	HIF1A and NFAT5 coordinate Na ⁺ -boosted antibacterial defense via enhanced autophagy and autolysosomal targeting. Autophagy, 2019, 15, 1899-1916.	4.3	39
26	DAMPening sterile inflammation of the kidney. Kidney International, 2019, 95, 489-491.	2.6	23
27	Targeting kidney inflammation as a new therapy for primary hyperoxaluria?. Nephrology Dialysis Transplantation, 2019, 34, 908-914.	0.4	14
28	Protecting the kidney against autoimmunity and inflammation. Nature Reviews Nephrology, 2019, 15, 66-68.	4.1	10
29	Antigenâ€specific Helios ^{â^'} , Neuropilinâ€1 ^{â^'} Tregs induce apoptosis of autoreactive B cells via <scp>PD</scp> â€1. Immunology and Cell Biology, 2018, 96, 852-862.	1.0	12
30	InÂVivo Labeling by CD73 Marks Multipotent Stromal Cells and Highlights Endothelial Heterogeneity in the Bone Marrow Niche. Cell Stem Cell, 2018, 22, 262-276.e7.	5.2	47
31	Plasmacytoid dendritic cells: important players in human kidney allograft rejection. Kidney International, 2018, 93, 301-303.	2.6	2
32	The multifaceted role of the renal mononuclear phagocyte system. Cellular Immunology, 2018, 330, 97-104.	1.4	37
33	Rescue of T-cell function during persistent pulmonary adenoviral infection by Toll-like receptor 9 activation. Journal of Allergy and Clinical Immunology, 2018, 141, 416-419.e10.	1.5	2
34	Opposing Roles of Dendritic Cell Subsets in Experimental GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 138-154.	3.0	65
35	Role of immune cells in crystal-induced kidney fibrosis. Matrix Biology, 2018, 68-69, 280-292.	1.5	7
36	The chemokine receptor CX3CR1 reduces renal injury in mice with angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2018, 315, F1526-F1535.	1.3	18

#	Article	IF	CITATIONS
37	CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming. Immunity, 2017, 46, 205-219.	6.6	278
38	Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut, 2017, 66, 507-518.	6.1	65
39	Immunophysiology: Macrophages as key regulators of homeostasis in various organs. Pflugers Archiv European Journal of Physiology, 2017, 469, 363-364.	1.3	5
40	<i>Irf4</i> -dependent CD103 ⁺ CD11b ⁺ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus. Gut, 2017, 66, 2110-2120.	6.1	63
41	Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination. Oncolmmunology, 2017, 6, e1338995.	2.1	24
42	Urinary tract infection: recent insight into the evolutionary arms race between uropathogenic Escherichia coli and our immune system. Nephrology Dialysis Transplantation, 2017, 32, 1977-1983.	0.4	30
43	Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. Journal of Hepatology, 2017, 66, 978-986.	1.8	16
44	Prolonged IKKβ Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells. Cell Reports, 2017, 21, 578-586.	2.9	22
45	Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. Journal of the American Society of Nephrology: JASN, 2017, 28, 452-459.	3.0	274
46	Neutrophil Migration into the Infected Uroepithelium Is Regulated by the Crosstalk between Resident and Helper Macrophages. Pathogens, 2016, 5, 15.	1.2	16
47	Recombinant HLA-G as Tolerogenic Immunomodulant in Experimental Small Bowel Transplantation. PLoS ONE, 2016, 11, e0158907.	1.1	4
48	The Hierarchy of Antigen Delivery. EBioMedicine, 2016, 5, 7-8.	2.7	1
49	More trouble with FGF23: a novel role in systemic immunosuppression. Kidney International, 2016, 89, 1176-1177.	2.6	4
50	A grain of salt on kidney dendritic cell function in allograft rejection. Kidney International, 2016, 89, 14-16.	2.6	1
51	CD103+ Kidney Dendritic Cells Protect against Crescentic GN by Maintaining IL-10–Producing Regulatory T Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 3368-3382.	3.0	33
52	Inhibitor of NFκB Kinase Subunit 2 Blockade Hinders the Initiation but Aggravates the Progression of Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 1917-1924.	3.0	13
53	B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6182-E6191.	3.3	24
54	Impact of macrophages on tumor growth characteristics in a murine ocular tumor model. Experimental Eye Research, 2016, 151, 9-18.	1.2	4

#	Article	IF	CITATIONS
55	German Society for Immunology and Australasian Society for Immunology joint Workshop 3 rd –4 th December 2015 – Meeting report. European Journal of Immunology, 2016, 46, 265-268.	1.6	2
56	An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis inÂmice. Kidney International, 2016, 90, 525-539.	2.6	144
57	The complement receptor C5aR1 contributes to renal damage but protects the heart in angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2016, 310, F1356-F1365.	1.3	35
58	Intravitreally Injected HCmel12 Melanoma Cells Serve as a Mouse Model of Tumor Biology of Intraocular Melanoma. Current Eye Research, 2016, 41, 121-128.	0.7	11
59	Cutting Edge: The RIG-I Ligand 3pRNA Potently Improves CTL Cross-Priming and Facilitates Antiviral Vaccination. Journal of Immunology, 2016, 196, 2439-2443.	0.4	42
60	Macrophages: sentinels and regulators of the immune system. Cellular Microbiology, 2016, 18, 475-487.	1.1	147
61	Tumor-necrosis factor impairs CD4+ T cell–mediated immunological control in chronic viral infection. Nature Immunology, 2016, 17, 593-603.	7.0	75
62	Immune Mechanisms in Arterial Hypertension. Journal of the American Society of Nephrology: JASN, 2016, 27, 677-686.	3.0	157
63	Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. Journal of the American Society of Nephrology: JASN, 2016, 27, 1650-1664.	3.0	59
64	Splenic red pulp macrophages are intrinsically superparamagnetic and contaminate magnetic cell isolates. Scientific Reports, 2015, 5, 12940.	1.6	41
65	The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8+ T Cell Generation. Frontiers in Immunology, 2015, 6, 379.	2.2	53
66	The Debate about Dendritic Cells and Macrophages in the Kidney. Frontiers in Immunology, 2015, 6, 435.	2.2	53
67	Differential Induction of Ly6G and Ly6C Positive Myeloid Derived Suppressor Cells in Chronic Kidney and Liver Inflammation and Fibrosis. PLoS ONE, 2015, 10, e0119662.	1.1	43
68	Selective Dependence of Kidney Dendritic Cells on CX3CR1—Implications for Glomerulonephritis Therapy. Advances in Experimental Medicine and Biology, 2015, 850, 55-71.	0.8	8
69	Dendritic Cells and Macrophages. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1841-1851.	2.2	81
70	CX3CR1 Reduces Kidney Fibrosis by Inhibiting Local Proliferation of Profibrotic Macrophages. Journal of Immunology, 2015, 194, 1628-1638.	0.4	62
71	Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62, 279-291.	3.6	304
72	Functional classification of memory CD8+ T cells by CX3CR1 expression. Nature Communications, 2015, 6, 8306.	5.8	231

#	Article	IF	CITATIONS
73	CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 55-66.	3.0	105
74	The VEGF-Receptor Inhibitor Axitinib Impairs Dendritic Cell Phenotype and Function. PLoS ONE, 2015, 10, e0128897.	1.1	25
75	Ly6Clow and Not Ly6Chigh Macrophages Accumulate First in the Heart in a Model of Murine Pressure-Overload. PLoS ONE, 2014, 9, e112710.	1.1	77
76	IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function. Cell Reports, 2014, 8, 1318-1327.	2.9	81
77	Crosstalk between Sentinel and Helper Macrophages Permits Neutrophil Migration into Infected Uroepithelium. Cell, 2014, 156, 456-468.	13.5	203
78	Dendritic cell-targeted vaccines — hope or hype?. Nature Reviews Immunology, 2014, 14, 705-711.	10.6	189
79	Transfer of MHC-class-I molecules among liver sinusoidal cells facilitates hepatic immune surveillance. Journal of Hepatology, 2014, 61, 600-608.	1.8	26
80	T Cell Isolation from Mouse Kidneys. Methods in Molecular Biology, 2014, 1193, 27-35.	0.4	4
81	VEGF-Production by CCR2-Dependent Macrophages Contributes to Laser-Induced Choroidal Neovascularization. PLoS ONE, 2014, 9, e94313.	1.1	65
82	The immune system and kidney disease: basic concepts and clinical implications. Nature Reviews Immunology, 2013, 13, 738-753.	10.6	522
83	Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity. Cell Reports, 2013, 3, 779-795.	2.9	65
84	Monitoring the Intracellular Routing of Internalized Antigens by Immunofluorescence Microscopy. Methods in Molecular Biology, 2013, 960, 371-377.	0.4	1
85	Isolation of a Specialized, Antigen-Loaded Early Endosomal Subpopulation by Flow Cytometry. Methods in Molecular Biology, 2013, 960, 379-388.	0.4	5
86	Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells. Journal of the American Society of Nephrology: JASN, 2013, 24, 906-916.	3.0	110
87	Mouse Model for Pyelonephritis. Current Protocols in Immunology, 2013, 101, Unit 15.23.1-9.	3.6	13
88	A crystal-clear mechanism of chronic kidney disease. Kidney International, 2013, 84, 859-861.	2.6	25
89	Batf3-Dependent Dendritic Cells in the Renal Lymph Node Induce Tolerance against Circulating Antigens. Journal of the American Society of Nephrology: JASN, 2013, 24, 543-549.	3.0	36
90	Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. Journal of Clinical Investigation, 2013, 123, 4242-4254.	3.9	84

#	Article	IF	CITATIONS
91	The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood, 2013, 122, 1192-1202.	0.6	300
92	Molecular and cell-biological mechanisms of antigen cross-presentation. Frontiers in Immunology, 2013, 4, 51.	2.2	2
93	Expression of type I interferon by splenic macrophages suppresses adaptive immunity during sepsis. EMBO Journal, 2012, 31, 201-213.	3.5	33
94	Immature Renal Dendritic Cells Recruit Regulatory CXCR6+ Invariant Natural Killer T Cells to Attenuate Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1987-2000.	3.0	50
95	IL-17A Production by Renal γδT Cells Promotes Kidney Injury in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1486-1495.	3.0	78
96	Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nature Methods, 2012, 9, 385-390.	9.0	128
97	Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10468-10473.	3.3	112
98	TNF-Induced Target Cell Killing by CTL Activated through Cross-Presentation. Cell Reports, 2012, 2, 478-487.	2.9	60
99	The Renal Mononuclear Phagocytic System. Journal of the American Society of Nephrology: JASN, 2012, 23, 194-203.	3.0	243
100	Renal Dendritic Cells Adopt a Pro-Inflammatory Phenotype in Obstructive Uropathy to Activate T Cells but Do Not Directly Contribute to Fibrosis. American Journal of Pathology, 2012, 180, 91-103.	1.9	78
101	Isolation of functional dendritic cells from murine kidneys for immunological characterization. Nephrology, 2012, 17, 364-371.	0.7	8
102	Homeostatic and pathogenic role of renal dendritic cells. Kidney International, 2011, 80, 139-145.	2.6	41
103	Grand Challenges in Molecular Antigen-presenting Cell Biology. Frontiers in Immunology, 2011, 2, 8.	2.2	3
104	Chemokines: A New Dendritic Cell Signal for T Cell Activation. Frontiers in Immunology, 2011, 2, 31.	2.2	56
105	Kidney dendritic cells in acute and chronic renal disease. International Journal of Experimental Pathology, 2011, 92, 193-201.	0.6	34
106	Design of neoâ€glycoconjugates that target the mannose receptor and enhance TLRâ€independent crossâ€presentation and Th1 polarization. European Journal of Immunology, 2011, 41, 916-925.	1.6	49
107	Kidney Dendritic Cells Become Pathogenic during Crescentic Glomerulonephritis with Proteinuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 306-316.	3.0	76
108	Innate Immunity and Dendritic Cells in Kidney Disease and the Nobel Prize. Journal of the American Society of Nephrology: JASN, 2011, 22, 2139-2141.	3.0	2

#	Article	IF	CITATIONS
109	Endogenous foxp3+ T-regulatory cells suppress anti-glomerular basement membrane nephritis. Kidney International, 2011, 79, 977-986.	2.6	51
110	Kidney Dendritic Cells Induce Innate Immunity against Bacterial Pyelonephritis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1435-1441.	3.0	90
111	T cell cross-talk with kidney dendritic cells in glomerulonephritis. Journal of Molecular Medicine, 2010, 88, 19-26.	1.7	20
112	Bioluminescence imaging allows measuring CD8 T cell function in the liver. Hepatology, 2010, 51, 1430-1437.	3.6	38
113	Dendritic cells erase bad memory. European Journal of Immunology, 2010, 40, 1870-1872.	1.6	0
114	Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell–licensed DCs. Nature Immunology, 2010, 11, 313-320.	7.0	204
115	Cross-priming in health and disease. Nature Reviews Immunology, 2010, 10, 403-414.	10.6	373
116	Steady-state cross-presentation of OVA is mannose receptor-dependent but inhibitable by collagen fragments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E48-9; author reply E50-1.	3.3	28
117	The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity. Journal of Experimental Medicine, 2009, 206, 2079-2089.	4.2	287
118	The IL-23/Th17 Axis Contributes to Renal Injury in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 969-979.	3.0	205
119	Autochthonous liver tumors induce systemic T cell tolerance associated with T cell receptor down-modulation. Hepatology, 2009, 49, 471-481.	3.6	13
120	Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology, 2009, 50, 909-919.	3.6	72
121	CD25 ⁺ T _{reg} specifically suppress autoâ€Ab generation against pancreatic tissue autoantigens. European Journal of Immunology, 2009, 39, 225-233.	1.6	24
122	Induction of peripheral CD4 ⁺ Tâ€cell tolerance and CD8 ⁺ Tâ€cell crossâ€tolerance by dendritic cells. European Journal of Immunology, 2009, 39, 2325-2330.	1.6	68
123	Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. Journal of Clinical Investigation, 2009, 119, 1286-1297.	3.9	180
124	CD11c: Not merely a murine DC marker, but also a useful vaccination target. European Journal of Immunology, 2008, 38, 2072-2075.	1.6	17
125	Endocytosis mechanisms and the cell biology of antigen presentation. Current Opinion in Immunology, 2008, 20, 89-95.	2.4	218
126	Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nature Immunology, 2008, 9, 558-566.	7.0	356

#	Article	IF	CITATIONS
127	CCR5 Deficiency Aggravates Crescentic Glomerulonephritis in Mice. Journal of Immunology, 2008, 181, 6546-6556.	0.4	55
128	The Kidney-Renal Lymph Node-System Contributes to Cross-Tolerance against Innocuous Circulating Antigen. Journal of Immunology, 2008, 180, 706-715.	0.4	70
129	CCR2 Mediates Homeostatic and Inflammatory Release of Gr1high Monocytes from the Bone Marrow, but Is Dispensable for Bladder Infiltration in Bacterial Urinary Tract Infection. Journal of Immunology, 2008, 181, 5579-5586.	0.4	86
130	Renal Dendritic Cells Stimulate IL-10 Production and Attenuate Nephrotoxic Nephritis. Journal of the American Society of Nephrology: JASN, 2008, 19, 527-537.	3.0	117
131	The role of chemokines and their receptors in dendritic cell biology. Frontiers in Bioscience - Landmark, 2008, 13, 2238.	3.0	45
132	Th17 cells: a third subset of CD4+ T effector cells involved in organ-specific autoimmunity. Nephrology Dialysis Transplantation, 2007, 23, 816-819.	0.4	21
133	Chemokine Receptor CXCR3 Mediates T Cell Recruitment and Tissue Injury in Nephrotoxic Nephritis in Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 2071-2084.	3.0	89
134	Islet β-Cell-Specific T Cells Can Use Different Homing Mechanisms to Infiltrate and Destroy Pancreatic Islets. American Journal of Pathology, 2007, 170, 240-250.	1.9	54
135	Distinct Pathways of Antigen Uptake and Intracellular Routing in CD4 and CD8 T Cell Activation. Science, 2007, 316, 612-616.	6.0	553
136	Role of T cells and dendritic cells in glomerular immunopathology. Seminars in Immunopathology, 2007, 29, 317-335.	2.8	57
137	Tumor Necrosis Factor Alpha- and Inducible Nitric Oxide Synthase-Producing Dendritic Cells Are Rapidly Recruited to the Bladder in Urinary Tract Infection but Are Dispensable for Bacterial Clearance. Infection and Immunity, 2006, 74, 6100-6107.	1.0	87
138	The Mannose Receptor Mediates Uptake of Soluble but Not of Cell-Associated Antigen for Cross-Presentation. Journal of Immunology, 2006, 176, 6770-6776.	0.4	248
139	Cutting Edge: TLR Ligands Are Not Sufficient to Break Cross-Tolerance to Self-Antigens. Journal of Immunology, 2005, 174, 1159-1163.	0.4	64
140	Heat Shock Protein 60 Is Released in Immune-Mediated Glomerulonephritis and Aggravates Disease: In Vivo Evidence for an Immunologic Danger Signal. Journal of the American Society of Nephrology: JASN, 2005, 16, 383-391.	3.0	51
141	Identification and Functional Characterization of Dendritic Cells in the Healthy Murine Kidney and in Experimental Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 613-621.	3.0	218
142	Development of new strategies to prevent type 1 diabetes: the role of animal models. Annals of Medicine, 2003, 35, 546-563.	1.5	15
143	Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-Antigen Occurs by a Bcl-2–inhibitable Pathway Mediated by Bim. Journal of Experimental Medicine, 2002, 196, 947-955.	4.2	136
144	Kidney protection against autoreactive CD8+ T cells distinct from immunoprivilege and sequestration. Kidney International, 2001, 60, 664-671.	2.6	7

#	Article	IF	CITATIONS
145	Cutting Edge: Dendritic Cells Are Sufficient to Cross-Present Self-Antigens to CD8 T Cells In Vivo. Journal of Immunology, 2001, 166, 1439-1442.	0.4	172
146	Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nature Medicine, 2000, 6, 1348-1354.	15.2	674
147	Cross-presentation: inducing CD8 T cell immunity and tolerance. Journal of Molecular Medicine, 2000, 78, 326-332.	1.7	46
148	Signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature, 1999, 398, 341-344.	13.7	120
149	The threshold for autoimmune T cell killing is influenced by B7-1. European Journal of Immunology, 1998, 28, 949-960.	1.6	40
150	Cross-presentation: a general mechanism for CTL immunity and tolerance. Trends in Immunology, 1998, 19, 368-373.	7.5	236
151	The Peripheral Deletion of Autoreactive CD8+ T Cells Induced by Cross-presentation of Self-antigens Involves Signaling through CD95 (Fas, Apo-1). Journal of Experimental Medicine, 1998, 188, 415-420.	4.2	157
152	Major Histocompatibility Complex Class II Expression by Intrinsic Renal Cells Is Required for Crescentic Glomerulonephritis. Journal of Experimental Medicine, 1998, 188, 597-602.	4.2	60
153	Crossâ€Presentation of Self Antigens to CD8 ⁺ T Cells: The Balance Between Tolerance and Autoimmunity. Novartis Foundation Symposium, 1998, 215, 172-190.	1.2	12
154	CD4+ T Cell Help Impairs CD8+ T Cell Deletion Induced by Cross-presentation of Self-Antigens and Favors Autoimmunity. Journal of Experimental Medicine, 1997, 186, 2057-2062.	4.2	292
155	Class l–restricted Cross-Presentation of Exogenous Self-Antigens Leads to Deletion of Autoreactive CD8+ T Cells. Journal of Experimental Medicine, 1997, 186, 239-245.	4.2	654