Shaocong Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First-principles insights of electronic properties of Blue Phosphorus/MoSi2N4 van der Waals heterostructure via vertical electric field and biaxial strain. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115321.	1.3	5
2	Spin-polarized excitons and charge carriers in chiral metal halide semiconductors. Journal of Materials Chemistry A, 2022, 10, 19367-19386.	5.2	10
3	Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 2021, 591, 61-65.	13.7	100
4	Large-Area Organic–Transition Metal Dichalcogenide Hybrid Light-Emitting Device. ACS Photonics, 2021, 8, 1152-1158.	3.2	5
5	Fast Organic Vapor Phase Deposition of Thin Films in Light-Emitting Diodes. ACS Nano, 2020, 14, 14157-14163.	7.3	7
6	Twist-angle dependence of moir \tilde{A} @ excitons in WS2/MoSe2 heterobilayers. Nature Communications, 2020, 11, 5888.	5.8	87
7	Using Fourier-Plane Imaging Microscopy for Determining Transition-Dipole-Moment Orientations in Organic Light-Emitting Devices. Physical Review Applied, 2020, 14, .	1.5	9
8	Nanoscale Mapping of Morphology of Organic Thin Films. Nano Letters, 2020, 20, 8290-8297.	4.5	2
9	Ultralongâ€Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Excitonâ€Polariton Propagation. Advanced Materials, 2020, 32, e2002127.	11.1	58
10	Temperature-Dependence of an Amorphous Organic Thin Film Polariton Laser. ACS Photonics, 2020, 7, 867-872.	3.2	7
11	Temperature dependence of lasing threshold in organic TDAF polariton condensation. , 2020, , .		0
12	Exciton polariton-mediated long-range excitation energy transport in disordered organic semiconductors. , 2020, , .		0
13	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. Advanced Materials, 2019, 31, e1903173.	11.1	105
14	Ultrastrong coupling of vibrationally dressed organic Frenkel excitons with Bloch surface waves in a one-sided all-dielectric structure. Physical Review B, 2019, 100, .	1.1	11
15	Electric-field-induced optical hysteresis in single-layer WSe2. Applied Physics Letters, 2019, 115, 161103.	1.5	3
16	High Efficiency Semi-Transparent Organic Photovoltaics. , 2019, , .		3
17	Reducing Architecture Limitations for Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1706226.	11.1	181
18	Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping. Joule, 2018, 2, 2421-2433.	11.7	308

SHAOCONG HOU

#	Article	IF	CITATIONS
19	High Efficiency Blue Perovskite Nanocrystal LEDs. , 2018, , .		Ο
20	Blue Perovskite LEDs: Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes (Adv. Mater. 20/2018). Advanced Materials, 2018, 30, 1870137.	11.1	5
21	Efficient blue perovskite nanocrystal light emitting diodes (Conference Presentation). , 2018, , .		0
22	Overview of Solar Photovoltaic Technology. Springer Theses, 2017, , 1-30.	0.0	0
23	Carbon Fibers as Versatile Substrates for Fiber Solar Cells. Springer Theses, 2017, , 53-77.	0.0	0
24	Graphene Electrocatalysts for Fiber Dye-Sensitized Solar Cells. Springer Theses, 2017, , 79-105.	0.0	0
25	Fiber Solar Cells Utilizing Polymer Fibers. Springer Theses, 2017, , 43-52.	0.0	0
26	Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. ACS Applied Materials & Interfaces, 2017, 9, 18417-18422.	4.0	137
27	Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics. Science Advances, 2017, 3, e1602991.	4.7	57
28	Film Deposition on a Wire/Fiber via In Situ Joule Heating Process. Springer Theses, 2017, , 31-41.	0.0	0
29	Highly Efficient Perovskite Nanocrystal Lightâ€Emitting Diodes Enabled by a Universal Crosslinking Method. Advanced Materials, 2016, 28, 3528-3534.	11.1	782
30	Dyeâ€Sensitized Solar Cells with Vertically Aligned TiO ₂ Nanowire Arrays Grown on Carbon Fibers. ChemSusChem, 2014, 7, 474-482.	3.6	43
31	Integration of fiber dye-sensitized solar cells with luminescent solar concentrators for high power output. Journal of Materials Chemistry A, 2014, 2, 926-932.	5.2	27
32	A novel low-cost, one-step and facile synthesis of TiO2 for efficient fiber dye-sensitized solarcells. Nano Energy, 2013, 2, 537-544.	8.2	41
33	Macroscopic, Flexible, High-Performance Graphene Ribbons. ACS Nano, 2013, 7, 10225-10232.	7.3	95
34	Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy and Environmental Science, 2013, 6, 3356.	15.6	265
35	Integrated power fiber for energy conversion and storage. Energy and Environmental Science, 2013, 6, 805.	15.6	359
36	Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes. Nano Energy, 2013, 2, 1242-1248.	8.2	107

SHAOCONG HOU

#	Article	IF	CITATIONS
37	A new ionic liquid organic redox electrolyte for high-efficiency iodine-free dye-sensitized solar cells. Journal of Power Sources, 2013, 221, 328-333.	4.0	23
38	Macro/microfiber-shaped electronic devices. Nano Energy, 2012, 1, 273-281.	8.2	69
39	Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells. Journal of Power Sources, 2012, 215, 164-169.	4.0	61
40	Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage. Advanced Materials, 2012, 24, 5713-5718.	11.1	571
41	All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 125-130.	1.3	82
42	Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale, 2012, 4, 1248.	2.8	109
43	Flexible conductive threads for wearable dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6549.	6.7	64
44	Direct application of commercial fountain pen ink to efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 9639.	6.7	40
45	TCOâ€Free, Flexible, and Bifacial Dyeâ€Sensitized Solar Cell Based on Lowâ€Cost Metal Wires. Advanced Energy Materials, 2012, 2, 37-41.	10.2	68
46	Fiber-shaped all-solid state dye sensitized solar cell with remarkably enhanced performance via substrate surface engineering and TiO2 film modification. Journal of Materials Chemistry, 2011, 21, 6383.	6.7	74
47	Large size, high efficiency fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 10076.	1.3	74
48	Graphite and platinum's catalytic selectivity for disulfide/thiolate (T2/Tâ^') and triiodide/iodide (I3â^'/Iâ^'). Journal of Materials Chemistry, 2011, 21, 14815.	6.7	45
49	Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energy and Environmental Science, 2011, 4, 3379.	15.6	101
50	Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode. Journal of Materials Chemistry, 2011, 21, 13776.	6.7	104