
Jacqueline F Mcginty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BDNF as a therapeutic candidate for cocaine use disorders. Addiction Neuroscience, 2022, 2, 100006.	1.3	1
2	Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Frontiers in Behavioral Neuroscience, 2020, 14, 590528.	2.0	47
3	An institution-wide faculty mentoring program at an academic health center with 6-year prospective outcome data. Journal of Clinical and Translational Science, 2019, 3, 308-315.	0.6	8
4	Role of Oxytocin in Countering Addiction-Associated Behaviors Exacerbated by Stress. , 2019, , 213-219.		0
5	Biphasic effect of abstinence duration following cocaine self-administration on spine morphology and plasticity-related proteins in prelimbic cortical neurons projecting to the nucleus accumbens core. Brain Structure and Function, 2019, 224, 741-758.	2.3	28
6	Intraâ€prelimbic cortical inhibition of striatalâ€enriched tyrosine phosphatase suppresses cocaine seeking in rats. Addiction Biology, 2018, 23, 219-229.	2.6	13
7	<i>ARC</i> and <i>BDNF</i> expression after cocaine selfâ€administration or cueâ€induced reinstatement of cocaine seeking in adolescent and adult male rats. Addiction Biology, 2018, 23, 1233-1241.	2.6	14
8	Divergent Prelimbic Cortical Pathways Interact with BDNF to Regulate Cocaine-seeking. Journal of Neuroscience, 2018, 38, 8956-8966.	3.6	34
9	Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology, 2018, 140, 35-42.	4.1	25
10	Role of Src Family Kinases in BDNF-Mediated Suppression of Cocaine-Seeking and Prevention of Cocaine-Induced ERK, GluN2A, and GluN2B Dephosphorylation in the Prelimbic Cortex. Neuropsychopharmacology, 2017, 42, 1972-1980.	5.4	22
11	Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. European Neuropsychopharmacology, 2016, 26, 1989-1999.	0.7	30
12	Effects of oxytocin on methamphetamine-seeking exacerbated by predator odor pre-exposure in rats. Psychopharmacology, 2016, 233, 1015-1024.	3.1	29
13	Oxytocin Reduces Cocaine Seeking and Reverses Chronic Cocaine-Induced Changes in Glutamate Receptor Function. International Journal of Neuropsychopharmacology, 2015, 18, pyu009-pyu009.	2.1	33
14	A Single Brain-Derived Neurotrophic Factor Infusion into the Dorsomedial Prefrontal Cortex Attenuates Cocaine Self-Administration-Induced Phosphorylation of Synapsin in the Nucleus Accumbens during Early Withdrawal. International Journal of Neuropsychopharmacology, 2015, 18, pyu049-pyu049.	2.1	11
15	Cocaine self-administration causes signaling deficits in corticostriatal circuitry that are reversed by BDNF in early withdrawal. Brain Research, 2015, 1628, 82-87.	2.2	12
16	Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addiction Biology, 2014, 19, 77-86.	2.6	24
17	Short and long access to cocaine self-administration activates tyrosine phosphatase STEP and attenuates GluN expression but differentially regulates GluA expression in the prefrontal cortex. Psychopharmacology, 2013, 229, 603-613.	3.1	31
18	Epigenetics and Psychostimulant Addiction. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012047-a012047.	6.2	61

JACQUELINE F MCGINTY

#	Article	IF	CITATIONS
19	The Many Faces of MeCP2. Neuropsychopharmacology, 2012, 37, 313-314.	5.4	5
20	RGS4 overexpression in the rat dorsal striatum modulates mGluR5- and amphetamine-mediated behavior and signaling. Psychopharmacology, 2012, 221, 621-635.	3.1	29
21	Is Brain-Derived Neurotrophic Factor a Selective Biomarker that Predicts Cocaine Relapse Outcomes?. Biological Psychiatry, 2011, 70, 700-701.	1.3	6
22	The Role of BDNF/TrkB Signaling in Acute Amphetamine-Induced Locomotor Activity and Opioid Peptide Gene Expression in the Rat Dorsal Striatum. Frontiers in Systems Neuroscience, 2011, 5, 60.	2.5	16
23	D1 and D2 dopamine receptors differentially mediate the activation of phosphoproteins in the striatum of amphetamine-sensitized rats. Psychopharmacology, 2011, 214, 653-663.	3.1	36
24	The Suppressive Effect of an Intra-Prefrontal Cortical Infusion of BDNF on Cocaine-Seeking Is Trk Receptor and Extracellular Signal-Regulated Protein Kinase Mitogen-Activated Protein Kinase Dependent. Journal of Neuroscience, 2011, 31, 834-842.	3.6	94
25	An intrastriatal brain-derived neurotrophic factor infusion restores striatal gene expression in Bdnf heterozygous mice. Brain Structure and Function, 2010, 215, 97-104.	2.3	13
26	Brain-derived neurotrophic factor and cocaine addiction. Brain Research, 2010, 1314, 183-193.	2.2	192
27	A dual-hit animal model for age-related parkinsonism. Progress in Neurobiology, 2010, 90, 217-229.	5.7	46
28	Context-driven cocaine-seeking in abstinent rats increases activity-regulated gene expression in the basolateral amygdala and dorsal hippocampus differentially following short and long periods of abstinence. Neuroscience, 2010, 170, 570-579.	2.3	21
29	A Single Intra-PFC Infusion of BDNF Prevents Cocaine-Induced Alterations in Extracellular Glutamate within the Nucleus Accumbens. Journal of Neuroscience, 2009, 29, 3715-3719.	3.6	115
30	Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiology of Disease, 2009, 33, 459-466.	4.4	22
31	Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology, 2008, 198, 77-91.	3.1	68
32	Relapse to cocaine-seeking increases activity-regulated gene expression differentially in the striatum and cerebral cortex of rats following short or long periods of abstinence. Brain Structure and Function, 2008, 213, 215-227.	2.3	49
33	Amphetamineâ€induced locomotion and gene expression are altered in BDNF heterozygous mice. Genes, Brain and Behavior, 2008, 7, 906-914.	2.2	52
34	Regulation of psychostimulantâ€induced signaling and gene expression in the striatum. Journal of Neurochemistry, 2008, 104, 1440-1449.	3.9	62
35	Co-localization of GABA with other neuroactive substances in the basal ganglia. Progress in Brain Research, 2007, 160, 273-284.	1.4	29
36	Regulator of G-Protein Signaling 4 Interacts with Metabotropic Glutamate Receptor Subtype 5 in Rat Striatum: Relevance to Amphetamine Behavioral Sensitization. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 650-657.	2.5	42

#	Article	IF	CITATIONS
37	Chronic cocaine reduces RGS4 mRNA in rat prefrontal cortex and dorsal striatum. NeuroReport, 2007, 18, 1261-1265.	1.2	21
38	Long-Term Consequences of Methamphetamine Exposure in Young Adults Are Exacerbated in Glial Cell Line-Derived Neurotrophic Factor Heterozygous Mice. Journal of Neuroscience, 2007, 27, 8816-8825.	3.6	66
39	A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. European Journal of Neuroscience, 2007, 26, 757-766.	2.6	175
40	Repeated amphetamine treatment increases phosphorylation of extracellular signalâ€regulated kinase, protein kinase B, and cyclase response elementâ€binding protein in the rat striatum. Journal of Neurochemistry, 2007, 103, 706-713.	3.9	35
41	BDNF heterozygous mice demonstrate age-related changes in striatal and nigral gene expression. Experimental Neurology, 2006, 199, 362-372.	4.1	27
42	Extracellular signal-regulated mitogen-activated protein kinase inhibitors decrease amphetamine-induced behavior and neuropeptide gene expression in the striatum. Neuroscience, 2006, 138, 1289-1298.	2.3	50
43	Acute amphetamine down-regulates RCS4 mRNA and protein expression in rat forebrain: distinct roles of D1and D2dopamine receptors. Journal of Neurochemistry, 2006, 96, 1606-1615.	3.9	42
44	Intracerebral Baclofen Administration Decreases Amphetamine-Induced Behavior and Neuropeptide Gene Expression in the Striatum. Neuropsychopharmacology, 2005, 30, 880-890.	5.4	13
45	The Ventral/Dorsal Divide: To Integrate or Separate. , 2005, , 437-456.		Ο
46	GABAB receptor stimulation decreases amphetamine-induced behavior and neuropeptide gene expression in the striatum. Brain Research, 2004, 1004, 18-28.	2.2	31
47	Local $\hat{1}$ /4 and $\hat{1}'$ opioid receptors regulate amphetamine-induced behavior and neuropeptide mRNA in the striatum. Neuroscience, 2003, 121, 387-398.	2.3	24
48	NK-1 receptor blockade decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Brain Research, 2002, 931, 41-49.	2.2	20
49	Gene expression profile from the striatum of amphetamine-treated rats: a cDNA array and in situ hybridization histochemical study. Gene Expression Patterns, 2002, 1, 193-198.	0.8	49
50	Kappa opioid receptor stimulation decreases amphetamine-induced behavior and neuropeptide mRNA expression in the striatum. Molecular Brain Research, 2001, 93, 27-35.	2.3	37
51	Cyclic AMP and mitogen-activated protein kinases are required for glutamate-dependent cyclic AMP response element binding protein and Elk-1 phosphorylation in the dorsal striatumin vivo. Journal of Neurochemistry, 2001, 76, 401-412.	3.9	50
52	Presynaptic k-Opioid and Muscarinic Receptors Inhibit the Calcium-Dependent Component of Evoked Glutamate Release from Striatal Synaptosomes. Journal of Neurochemistry, 2001, 73, 1058-1065.	3.9	36
53	The K-Opioid Agonist, U-69593, Decreases Acute Amphetamine-Evoked Behaviors and Calcium-Dependent Dialysate Levels of Dopamine and Glutamate in the Ventral Striatum. Journal of Neurochemistry, 2001, 73, 1066-1074.	3.9	107
54	Delta opioid receptors regulate calcium-dependent, amphetamine-evoked glutamate levels in the rat striatum: an in vivo microdialysis study. Brain Research, 2000, 861, 296-304.	2.2	51

JACQUELINE F MCGINTY

#	Article	IF	CITATIONS
55	Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate–putamen is primarily associated with synaptic vesicles in axons. Neuroscience, 2000, 96, 91-99.	2.3	81
56	Introduction. Annals of the New York Academy of Sciences, 1999, 877, xii-xvi.	3.8	31
57	Regulation of Neurotransmitter Interactions in the Ventral Striatum. Annals of the New York Academy of Sciences, 1999, 877, 129-139.	3.8	45
58	Glutamate-dopamine interactions mediate the effects of psychostimulant drugs. Addiction Biology, 1999, 4, 141-150.	2.6	41
59	The role of dorsal striatal GABAA receptors in dopamine agonist-induced behavior and neuropeptide gene expression. Brain Research, 1999, 836, 99-109.	2.2	7
60	Metabotropic glutamate receptor agonist increases neuropeptide mRNA expression in rat striatum. Molecular Brain Research, 1998, 54, 262-269.	2.3	26
61	κ Receptor Activation Attenuates <scp>l</scp> â€ <i>trans</i> â€Pyrrolidineâ€2,4â€Dicarboxylic Acidâ€Evoked Glutamate Levels in the Striatum. Journal of Neurochemistry, 1998, 70, 626-634.	3.9	31
62	Intrastriatal injection of a muscarinic receptor agonist and antagonist regulates striatal neuropeptide mRNA expression in normal and amphetamine-treated rats. Brain Research, 1997, 748, 62-70.	2.2	46
63	<scp>l</scp> â€ <i>trans</i> â€Pyrrolidineâ€2,4â€Dicarboxylic Acidâ€Evoked Striatal Glutamate Levels Are Attenuated by Calcium Reduction, Tetrodotoxin, and Glutamate Receptor Blockade. Journal of Neurochemistry, 1997, 68, 1553-1563.	3.9	36
64	Intrastriatal injection of the metabotropic glutamate receptor antagonist MCPG attenuates acute amphetamine-stimulated neuropeptide mRNA expression in rat striatum. Neuroscience Letters, 1996, 218, 13-16.	2.1	27
65	The effects of D1 or D2 dopamine receptor blockade on zif/268 and preprodynorphin gene expression in rat forebrain following a short-term cocaine binge. Molecular Brain Research, 1996, 35, 237-248.	2.3	49
66	D1 and D2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine. , 1996, 22, 114-122.		81
67	Forskolin induces preproenkephalin and preprodynorphin mRNA in rat striatum as demonstrated by in situ hybridization histochemistry. Synapse, 1995, 19, 151-159.	1.2	35
68	Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats. Brain Research, 1995, 673, 262-274.	2.2	60
69	Differential Effects of D ₁ and D ₂ Dopamine Receptor Antagonists on Acute Amphetamine―or Methamphetamineâ€Induced Upâ€Regulation of <i>zif/268</i> mRNA Expression in Rat Forebrain. Journal of Neurochemistry, 1995, 65, 2706-2715.	3.9	62
70	Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse, 1994, 18, 35-45.	1.2	119
71	NMDA receptors mediate amphetamine-induced upregulation ofzif/268 and preprodynorphin mRNA expression in rat striatum. Synapse, 1994, 18, 343-353.	1.2	102
72	Role of kainate/AMPA receptors in induction of striatal zif/268 and preprodynorphin mRNA by a single injection of amphetamine. Molecular Brain Research, 1994, 27, 118-126.	2.3	53

#	Article	IF	CITATIONS
73	Acute amphetamine or methamphetamine alters opioid peptide mRNA expression in rat striatum. Molecular Brain Research, 1994, 21, 359-362.	2.3	75