Leonid Chindelevitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563522/publications.pdf

Version: 2024-02-01

43 papers

1,852 citations

758635 12 h-index 29 g-index

57 all docs 57 docs citations

57 times ranked

3085 citing authors

#	Article	IF	Citations
1	Inferring the effectiveness of government interventions against COVID-19. Science, 2021, 371, .	6.0	730
2	A standardised method for interpreting the association between mutations and phenotypic drug resistance in <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2017, 50, 1701354.	3.1	273
3	Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe. Nature Communications, 2021, 12, 5820.	5.8	135
4	The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, The, 2022, 3, e265-e273.	3.4	114
5	Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. Scientific Reports, 2018, 8, 15382.	1.6	75
6	MentaLiST – A fast MLST caller for large MLST schemes. Microbial Genomics, 2018, 4, .	1.0	55
7	Optimizing a global alignment of protein interaction networks. Bioinformatics, 2013, 29, 2765-2773.	1.8	53
8	Within-Host Heterogeneity of <i>Mycobacterium tuberculosis </i> Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study. Journal of Infectious Diseases, 2016, 213, 1796-1799.	1.9	45
9	An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models. Nature Communications, 2014, 5, 4893.	5.8	37
10	MetaMerge: scaling up genome-scale metabolic reconstructions, with application to Mycobacterium tuberculosis. Genome Biology, 2012, 13, R6.	13.9	31
11	LOCAL OPTIMIZATION FOR GLOBAL ALIGNMENT OF PROTEIN INTERACTION NETWORKS. , 2009, , 123-132.		25
12	ON THE INFERENCE OF PARSIMONIOUS INDEL EVOLUTIONARY SCENARIOS. Journal of Bioinformatics and Computational Biology, 2006, 04, 721-744.	0.3	24
13	Inverting the Viterbi algorithm. , 2008, , .		14
14	ClassTR: Classifying Within-Host Heterogeneity Based on Tandem Repeats with Application to Mycobacterium tuberculosis Infections. PLoS Computational Biology, 2016, 12, e1004475.	1.5	14
15	Relatedness of the incidence decay with exponential adjustment (IDEA) model, "Farr's law―and SIR compartmental difference equation models. Infectious Disease Modelling, 2018, 3, 1-12.	1.2	14
16	Polyclonal Pulmonary Tuberculosis Infections and Risk for Multidrug Resistance, Lima, Peru. Emerging Infectious Diseases, 2017, 23, 1887-1890.	2.0	11
17	Evaluating the potential impact of enhancing HIV treatment and tuberculosis control programmes on the burden of tuberculosis. Journal of the Royal Society Interface, 2015, 12, 20150146.	1.5	9
18	Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data. Infection, Genetics and Evolution, 2019, 72, 59-66.	1.0	9

#	Article	IF	Citations
19	INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis. Algorithms for Molecular Biology, 2021, 16, 17.	0.3	9
20	Reply to "Do genomeâ€scale models need exact solvers or clearer standards?â€s Molecular Systems Biology, 2015, 11, 830.	3.2	7
21	SplitStrains, a tool to identify and separate mixed Mycobacterium tuberculosis infections from WGS data. Microbial Genomics, 2021, 7, .	1.0	7
22	Network science inspires novel tree shape statistics. PLoS ONE, 2021, 16, e0259877.	1.1	7
23	Error analysis and preconditioning for an enhanced DtN-FE algorithm for exterior scattering problems. Journal of Computational and Applied Mathematics, 2007, 204, 493-504.	1.1	5
24	MCS2: minimal coordinated supports for fast enumeration of minimal cut sets in metabolic networks. Bioinformatics, 2019, 35, i615-i623.	1.8	4
25	A new resolution function to evaluate tree shape statistics. PLoS ONE, 2019, 14, e0224197.	1.1	4
26	On the rank-distance median of 3 permutations. BMC Bioinformatics, 2018, 19, 142.	1.2	3
27	Deconvoluting the diversity of within-host pathogen strains in a multi-locus sequence typing framework. BMC Bioinformatics, 2019, 20, 637.	1.2	3
28	Counting Sorting Scenarios and Intermediate Genomes for the Rank Distance. Lecture Notes in Computer Science, 2019, , 137-151.	1.0	1
29	Fast median computation for symmetric, orthogonal matrices under the rank distance. Linear Algebra and Its Applications, 2021, 614, 394-414.	0.4	1
30	Predicting drug resistance in M. tuberculosis using a long-term recurrent convolutional network. , 2021, , .		1
31	On the Rank-Distance Median of 3 Permutations. Lecture Notes in Computer Science, 2017, , 256-276.	1.0	1
32	Computing the distribution of the Robinson-Foulds distance. Computational Biology and Chemistry, 2020, 87, 107284.	1.1	1
33	Reply to Chen et al. Journal of Infectious Diseases, 2016, 214, 1287-1288.	1.9	0
34	The MONGOOSE Rational Arithmetic Toolbox. Methods in Molecular Biology, 2018, 1716, 77-99.	0.4	0
35	A Cubic Algorithm for the Generalized Rank Median of Three Genomes. Lecture Notes in Computer Science, 2018, , 3-27.	1.0	0
36	A cubic algorithm for the generalized rank median of three genomes. Algorithms for Molecular Biology, 2019, 14, 16.	0.3	0

#	Article	IF	Citations
37	Generalizations of the Genomic Rank Distance to Indels. Lecture Notes in Computer Science, 2019, , $152-164$.	1.0	0
38	Metabolic Network Analysis Demystified. Lecture Notes in Computer Science, 2011, , 31-33.	1.0	0
39	Vision Screening Results in a Cohort of Bhopal Gas Disaster Survivors. Current Science, 2017, 112, 2085.	0.4	0
40	PathOGiST: A Novel Method for Clustering Pathogen Isolates by Combining Multiple Genotyping Signals. Lecture Notes in Computer Science, 2020, , 108-124.	1.0	0
41	A new resolution function to evaluate tree shape statistics. , 2019, 14, e0224197.		0
42	A new resolution function to evaluate tree shape statistics., 2019, 14, e0224197.		0
43	A new resolution function to evaluate tree shape statistics. , 2019, 14, e0224197.		0