
Jens Bruening

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563253/publications.pdf Version: 2024-02-01

IENS RDUENING

#	Article	IF	CITATIONS
1	Arcuate Nucleus-Dependent Regulation of Metabolism—Pathways to Obesity and Diabetes Mellitus. Endocrine Reviews, 2022, 43, 314-328.	8.9	78
2	An antisense transcript transcribed from Irs2 locus contributes to the pathogenesis of hepatic steatosis in insulin resistance. Cell Chemical Biology, 2022, , .	2.5	2
3	Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metabolism, 2022, 34, 269-284.e9.	7.2	13
4	Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance. Science Advances, 2021, 7, .	4.7	14
5	POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nature Metabolism, 2021, 3, 299-308.	5.1	80
6	GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Molecular Metabolism, 2021, 45, 101163.	3.0	19
7	Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nature Neuroscience, 2021, 24, 913-929.	7.1	64
8	Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metabolism, 2021, 33, 1466-1482.e7.	7.2	79
9	Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity. Nature Communications, 2021, 12, 5249.	5.8	17
10	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	7.2	89
11	Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nature Metabolism, 2021, 3, 1662-1679.	5.1	32
12	Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 2020, 145, 283-300.e8.	1.5	24
13	Hepatic FTO is dispensable for the regulation of metabolism but counteracts HCC development inÂvivo. Molecular Metabolism, 2020, 42, 101085.	3.0	37
14	GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metabolism, 2020, 31, 1189-1205.e13.	7.2	76
15	NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nature Communications, 2020, 11, 442.	5.8	62
16	PNOCARC Neurons Promote Hyperphagia and Obesity upon High-Fat-Diet Feeding. Neuron, 2020, 106, 1009-1025.e10.	3.8	64
17	MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron, 2020, 107, 306-319.e9.	3.8	45
18	m6A RNA Methylation Maintains Hematopoietic Stem Cell Identity and Symmetric Commitment. Cell Reports, 2019, 28, 1703-1716.e6.	2.9	117

JENS BRUENING

#	Article	IF	CITATIONS
19	Time-dependent assessment of stimulus-evoked regional dopamine release. Nature Communications, 2019, 10, 336.	5.8	31
20	The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. Cell Reports, 2019, 27, 3182-3198.e9.	2.9	19
21	CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell, 2019, 177, 1536-1552.e23.	13.5	183
22	Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature, 2019, 575, 361-365.	13.7	116
23	CerS1-Derived C18:0 Ceramide in Skeletal Muscle Promotes Obesity-Induced Insulin Resistance. Cell Reports, 2019, 26, 1-10.e7.	2.9	119
24	VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism, 2018, 11, 129-136.	3.0	49
25	Food Perception Primes Hepatic ER Homeostasis via Melanocortin-Dependent Control of mTOR Activation. Cell, 2018, 175, 1321-1335.e20.	13.5	86
26	Melanin-Concentrating Hormone-Dependent Control of Feeding: When Volume Matters. Cell Metabolism, 2018, 28, 7-8.	7.2	8
27	Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Experimental and Molecular Medicine, 2018, 50, 1-17.	3.2	22
28	p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications, 2018, 9, 3432.	5.8	41
29	Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit. Cell Reports, 2018, 23, 1728-1741.	2.9	41
30	Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nature Communications, 2017, 8, 15259.	5.8	157
31	Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. DMM Disease Models and Mechanisms, 2017, 10, 679-689.	1.2	515
32	A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 2017, 26, 375-393.e7.	7.2	42
33	IL-6/Stat3-Dependent Induction of a Distinct, Obesity-Associated NK Cell Subpopulation Deteriorates Energy and Glucose Homeostasis. Cell Metabolism, 2017, 26, 171-184.e6.	7.2	104
34	Hypothalamic inflammation in obesity and metabolic disease. Journal of Clinical Investigation, 2017, 127, 24-32.	3.9	321
35	Energy imbalance alters Ca2+ handling and excitability of POMC neurons. ELife, 2017, 6, .	2.8	45
36	Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity. Cell Reports, 2016, 17, 2512-2521.	2.9	56

3

JENS BRUENING

#	Article	IF	CITATIONS
37	Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell, 2016, 165, 882-895.	13.5	167
38	Hunger-Driven Motivational State Competition. Neuron, 2016, 92, 187-201.	3.8	215
39	AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue. Cell, 2016, 165, 125-138.	13.5	222
40	FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature, 2016, 529, 216-220.	13.7	438
41	Ceramide Synthase 4 Regulates Stem Cell Homeostasis and Hair Follicle Cycling. Journal of Investigative Dermatology, 2015, 135, 1501-1509.	0.3	40
42	Central insulin signaling modulates hypothalamus–pituitary–adrenal axis responsiveness. Molecular Metabolism, 2015, 4, 83-92.	3.0	40
43	Hypothalamic UDP Increases in Obesity and Promotes Feeding via P2Y6-Dependent Activation of AgRP Neurons. Cell, 2015, 162, 1404-1417.	13.5	64
44	Regulation of metabolism by long, non-coding RNAs. Frontiers in Genetics, 2014, 5, 57.	1.1	160
45	Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide Neurons in the Development of Obesity and Insulin Resistance. Cell Reports, 2014, 9, 1495-1506.	2.9	87
46	Meta-analysis of global metabolomic data identifies metabolites associated with life-span extension. Metabolomics, 2014, 10, 737-743.	1.4	24
47	Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology, 2014, 15, 423-430.	7.0	577
48	The paradox of neuronal insulin action and resistance in the development of agingâ€associated diseases. Alzheimer's and Dementia, 2014, 10, S3-11.	0.4	66
49	Die Another Day: A Painless Path to Longevity. Cell, 2014, 157, 1004-1006.	13.5	6
50	Neonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding. Cell, 2014, 156, 495-509.	13.5	299
51	Signaling through the Adaptor Molecule MyD88 in CD4+ T Cells Is Required to Overcome Suppression by Regulatory T Cells. Immunity, 2014, 40, 78-90.	6.6	100
52	The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nature Neuroscience, 2013, 16, 1042-1048.	7.1	414
53	Selective Insulin and Leptin Resistance in Metabolic Disorders. Cell Metabolism, 2012, 16, 144-152.	7.2	245
54	High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nature Neuroscience, 2011, 14, 911-918.	7.1	205

JENS BRUENING

#	Article	IF	CITATIONS
55	Role for Insulin Signaling in Catecholaminergic Neurons in Control of Energy Homeostasis. Cell Metabolism, 2011, 13, 720-728.	7.2	156
56	Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucoseÂmetabolism. Nature Cell Biology, 2011, 13, 434-446.	4.6	472
57	Fischer et al. reply. Nature, 2010, 464, E2-E2.	13.7	2
58	Hormone and glucose signalling in POMC and AgRP neurons. Journal of Physiology, 2009, 587, 5305-5314.	1.3	193
59	Activation of Stat3 Signaling in AgRP Neurons Promotes Locomotor Activity. Cell Metabolism, 2008, 7, 236-248.	7.2	114
60	Central insulin action regulates peripheral glucose and fat metabolism in mice. Journal of Clinical Investigation, 2008, 118, 2132-47.	3.9	223
61	Electrical Inhibition of Identified Anorexigenic POMC Neurons by Orexin/Hypocretin. Journal of Neuroscience, 2007, 27, 1529-1533.	1.7	72
62	Insulin Action in AgRP-Expressing Neurons Is Required for Suppression of Hepatic Glucose Production. Cell Metabolism, 2007, 5, 438-449.	7.2	579
63	Agouti-related peptide–expressing neurons are mandatory for feeding. Nature Neuroscience, 2005, 8, 1289-1291.	7.1	663
64	A Muscle-Specific Insulin Receptor Knockout Exhibits Features of the Metabolic Syndrome of NIDDM without Altering Glucose Tolerance. Molecular Cell, 1998, 2, 559-569.	4.5	1,071