Judith J Mcdonald

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5563119/publications.pdf
Version: 2024-02-01
$1 \quad$ M-matrix and inverse M-matrix extensions. Special Matrices, 2020, 8, 186-203.

2 Spectrally arbitrary patterns over rings with unity. Linear Algebra and Its Applications, 2019, 576, 228-245.
0.40

Spectrally arbitrary zeroâ€"nonzero patterns and field extensions. Linear Algebra and Its Applications, 2017, 519, 146-155.
$0.4 \quad 2$

4 Jordan chains of h-cyclic matrices. Linear Algebra and Its Applications, 2016, 498, 145-159.
$0.4 \quad 1$

Matrix roots of imprimitive irreducible nonnegative matrices. Linear Algebra and Its Applications, 2016,
$0.4 \quad 8$
$5 \quad \begin{aligned} & \text { Matrix roots of } \\ & 498,244-261 .\end{aligned}$

6 Matrix roots of eventually positive matrices. Linear Algebra and Its Applications, 2014, 456, 122-137.
$0.4 \quad 15$
$7 \quad$ Spectrally arbitrary patterns over finite fields. Linear and Multilinear Algebra, 2012, 60, 285-299.

> The minimum upper bound on the first ambiguous power of an irreducible, nonpowerful ray or sign pattern. Linear Algebra and Its Applications, 2011, 435, 1147-1156.
$0.4 \quad 3$

12 On a Generalization of Soules Bases. SIAM Journal on Matrix Analysis and Applications, 2010, 31, 1227-1234.
0.7

Spectrally arbitrary ray patterns. Linear Algebra and Its Applications, 2008, 429, 727-734.
0.4

12

Level characteristics corresponding to peripheral eigenvalues of a nonnegative matrix. Linear Algebra

15 Inertias of zeroâ€"nonzero patterns. Linear and Multilinear Algebra, 2007, 55, 229-238.

Spectrally arbitrary zeroâ€"nonzero patterns of order 4. Linear and Multilinear Algebra, 2007, 55,
On matrices with common invariant cones with applications in neural and gene networks. Linear
Algebra and Its Applications, 2005, 398, 37-67.

The symmetric nonnegative inverse eigenvalue problem for 5 $\mathrm{A}-5$ matrices. Linear Algebra and lts Applications, 2004, 393, 275-298.

Eventually nonnegative matrices are similar to seminonnegative matrices. Linear Algebra and Its

