Stefan Mecking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5563093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered Nanostructures in Thin Films of Precise Ion-Containing Multiblock Copolymers. ACS Central Science, 2022, 8, 388-393.	5.3	5
2	Hydrophilic Catalysts with High Activity and Stability in the Aqueous Polymerization of Ethylene to Highâ€Molecularâ€Weightâ€Polyethylene. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
3	Hydrophilic Catalysts with High Activity and Stability in the Aqueous Polymerization of Ethylene to Highâ€Molecularâ€Weightâ€Polyethylene. Angewandte Chemie, 2022, 134, .	1.6	2
4	Molecularly Defined Polyolefin Vitrimers from Catalytic Insertion Polymerization. Journal of the American Chemical Society, 2022, 144, 13226-13233.	6.6	17
5	Efficient Suppression of Chain Transfer and Branching via <i>C</i> _s â€Type Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie - International Edition, 2021, 60, 4018-4022.	7.2	51
6	Efficient Suppression of Chain Transfer and Branching via C s â€īype Shielding in a Neutral Nickel(II) Catalyst. Angewandte Chemie, 2021, 133, 4064-4068.	1.6	5
7	Compartmentalized polymerization in aqueous and organic media to low-entangled ultra high molecular weight polyethylene. Polymer Chemistry, 2021, 12, 3116-3123.	1.9	10
8	Closed-loop recycling of polyethylene-like materials. Nature, 2021, 590, 423-427.	13.7	344
9	Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules, 2021, 54, 4269-4279.	2.2	21
10	The Impact of Charge in a Ni(II) Polymerization Catalyst. ACS Catalysis, 2021, 11, 5358-5368.	5.5	7
11	Origin of the Anisotropy and Structure of Ellipsoidal Poly(fluorene) Nanoparticles. Macromolecules, 2021, 54, 5267-5277.	2.2	6
12	Coarse grained simulation of the aggregation and structure control of polyethylene nanocrystals. Journal of Physics Condensed Matter, 2021, 33, 264001.	0.7	2
13	Crystallization of Long-Spaced Precision Polyacetals III: Polymorphism and Crystallization Kinetics of Even Polyacetals Spaced by 6 to 26 Methylenes. Polymers, 2021, 13, 1560.	2.0	4
14	Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angewandte Chemie - International Edition, 2021, 60, 18472-18477.	7.2	9
15	Oligothiophene Phosphonic Acids for Self-Assembled Monolayer Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 32461-32466.	4.0	7
16	Neutral Unsymmetrical Coordinated Cyclophane Polymerization Catalysts. Angewandte Chemie, 2021, 133, 18620-18625.	1.6	2
17	Unlayered–Layered Crystal Transition in Recyclable Long-Spaced Aliphatic Polyesters. ACS Applied Polymer Materials, 2021, 3, 5243-5256.	2.0	10
18	Anhydrous Proton Transport within Phosphonic Acid Layers in Monodisperse Telechelic Polyethylenes. Journal of the American Chemical Society, 2021, 143, 16725-16733.	6.6	10

#	Article	IF	CITATIONS
19	Sub-3-Nanometer Domain Spacings of Ultrahigh-χ Multiblock Copolymers with Pendant Ionic Groups. ACS Nano, 2021, 15, 16738-16747.	7.3	13
20	Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science, 2021, 374, 604-607.	6.0	102
21	Living Aqueous Microemulsion Polymerization of Ethylene with Robust Ni(II) Phosphinophenolato Catalysts. Journal of the American Chemical Society, 2021, 143, 20605-20608.	6.6	27
22	Pentafluorophenyl Groups as Remote Substituents in Ni(II) Polymerization Catalysis. Organometallics, 2020, 39, 13-17.	1.1	14
23	Direct Observation of Chain Lengths and Conformations in Oligofluorene Distributions from Controlled Polymerization by Double Electron–Electron Resonance. Journal of the American Chemical Society, 2020, 142, 1952-1956.	6.6	7
24	Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity. Journal of the American Chemical Society, 2020, 142, 857-866.	6.6	72
25	Remote Perfluoroalkyl Substituents are Key to Living Aqueous Ethylene Polymerization. Angewandte Chemie - International Edition, 2020, 59, 3258-3263.	7.2	37
26	Remote Perfluoroalkyl Substituents are Key to Living Aqueous Ethylene Polymerization. Angewandte Chemie, 2020, 132, 3284-3289.	1.6	5
27	Neutral Nickel(II) Catalysts: From Hyperbranched Oligomers to Nanocrystal-Based Materials. Accounts of Chemical Research, 2020, 53, 2738-2752.	7.6	70
28	Polyethylene-like materials from plant oils. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190266.	1.6	17
29	Photodegradable branched polyethylenes from carbon monoxide copolymerization under benign conditions. Nature Communications, 2020, 11, 3693.	5.8	38
30	Crystallization of Long-Spaced Precision Polyacetals II: Effect of Polymorphism on Isothermal Crystallization Kinetics. Macromolecules, 2020, 53, 7899-7913.	2.2	16
31	A Practical Synthesis of [(tmeda)Ni(CH ₃) ₂], Isotopically Labeled [(tmeda)Ni(¹³ CH ₃) ₂], and Neutral Chelated-Nickel Methyl Complexes. Organometallics, 2020, 39, 3433-3440.	1.1	14
32	Ultrahigh Branching of Mainâ€Chainâ€Functionalized Polyethylenes by Inverted Insertion Selectivity. Angewandte Chemie, 2020, 132, 14402-14408.	1.6	25
33	Isothermal step thickening in a long-spaced aliphatic polyester. Polymer, 2020, 191, 122282.	1.8	7
34	Catalytic Chain Transfer Polymerization to Functional Reactive End Groups for Controlled Free Radical Growth. Macromolecules, 2020, 53, 2362-2368.	2.2	9
35	Ultrahigh Branching of Mainâ€Chainâ€Functionalized Polyethylenes by Inverted Insertion Selectivity. Angewandte Chemie - International Edition, 2020, 59, 14296-14302.	7.2	122
36	Anisotropic Extended-Chain Polymer Nanocrystals. Macromolecules, 2019, 52, 6142-6148.	2.2	4

#	Article	IF	CITATIONS
37	Straightforward Synthesis of Conjugated Block Copolymers by Controlled Suzuki–Miyaura Cross-Coupling Polymerization Combined with ATRP. Macromolecules, 2019, 52, 5917-5924.	2.2	13
38	Tetrakis[3,5-bis(pentafluorosulfanyl)phenyl]borate: A Weakly Coordinating Anion Probed in Polymerization Catalysis. Organometallics, 2019, 38, 2710-2713.	1.1	9
39	Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents. Angewandte Chemie - International Edition, 2019, 58, 17777-17781.	7.2	26
40	Periodic Polyethylene Sulfonates from Polyesterification: Bulk and Nanoparticle Morphologies and Ionic Conductivities. Macromolecules, 2019, 52, 8466-8475.	2.2	20
41	Coordinative Chain Transfer Polymerization of Butadiene with Functionalized Aluminum Reagents. Angewandte Chemie, 2019, 131, 17941-17945.	1.6	7
42	Crystallization of Long-Spaced Precision Polyacetals I: Melting and Recrystallization of Rapidly Formed Crystallites. Macromolecules, 2019, 52, 4934-4948.	2.2	23
43	Monodisperse and Telechelic Polyethylenes Form Extended Chain Crystals with Ionic Layers. Macromolecules, 2019, 52, 4949-4956.	2.2	28
44	Aqueous Dispersions of Ethylene Copolymers and Their Laponite Clay Nanocomposites from Free-Radical Dispersion Polymerization. Macromolecules, 2019, 52, 4270-4277.	2.2	7
45	Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nature Communications, 2019, 10, 2592.	5.8	63
46	Tailored Strength Neighboring Group Interactions Switch Polymerization to Dimerization Catalysis. ACS Catalysis, 2019, 9, 3888-3894.	5.5	19
47	Frontispiece: A Synthetic Polyester from Plant Oil Feedstock by Functionalizing Polymerization. Angewandte Chemie - International Edition, 2019, 58, .	7.2	1
48	Integrated extraction and catalytic upgrading of microalgae lipids in supercritical carbon dioxide. Green Chemistry, 2019, 21, 2428-2435.	4.6	10
49	Frontispiz: A Synthetic Polyester from Plant Oil Feedstock by Functionalizing Polymerization. Angewandte Chemie, 2019, 131, .	1.6	0
50	Incorporation of Radicals during Ni(II)-Catalyzed Ethylene Insertion Polymerization. ACS Catalysis, 2019, 9, 2760-2767.	5.5	6
51	Ancillary Ligands Impact Branching Microstructure in Late-Transition-Metal Polymerization Catalysis. ACS Catalysis, 2019, 9, 11552-11556.	5.5	14
52	A Synthetic Polyester from Plant Oil Feedstock by Functionalizing Polymerization. Angewandte Chemie, 2019, 131, 3384-3388.	1.6	5
53	A Synthetic Polyester from Plant Oil Feedstock by Functionalizing Polymerization. Angewandte Chemie - International Edition, 2019, 58, 3346-3350.	7.2	35
54	Tailored Interface Energetics for Efficient Charge Separation in Metal Oxide-Polymer Solar Cells. Scientific Reports, 2019, 9, 74.	1.6	8

#	Article	IF	CITATIONS
55	Multivalent Carbohydrate-Functionalized Polymer Nanocrystals. Biomacromolecules, 2019, 20, 294-304.	2.6	4
56	Diffusion of Molecular and Macromolecular Polyolefin Probes in Cylindrical Block Copolymer Structures As Observed by High Temperature Single Molecule Fluorescence Microscopy. Macromolecules, 2018, 51, 1873-1884.	2.2	12
57	Diamines for Polymer Materials via Direct Amination of Lipid―and Lignocelluloseâ€based Alcohols with NH ₃ . ChemCatChem, 2018, 10, 3027-3033.	1.8	40
58	Microalgae lipids as a feedstock for the production of benzene. Green Chemistry, 2018, 20, 1874-1878.	4.6	14
59	Thermoplastic Polyurethane Elastomers with Aliphatic Hard Segments Based on Plantâ€Oilâ€Derived Longâ€Chain Diisocyanates. Macromolecular Materials and Engineering, 2018, 303, 1700416.	1.7	27
60	Heterotelechelic and In-Chain Polar Functionalized Stereoregular Poly(dienes). Macromolecules, 2018, 51, 763-770.	2.2	25
61	Control of Chain Walking by Weak Neighboring Group Interactions in Unsymmetrical Catalysts. Journal of the American Chemical Society, 2018, 140, 1305-1312.	6.6	80
62	Production of chemicals from microalgae lipids – status and perspectives. European Journal of Lipid Science and Technology, 2018, 120, 1700152.	1.0	52
63	Highâ€Impact Polyamide Composites with Linear Ethylene–Norbornene Anhydride Copolymers from Insertion Polymerization. Macromolecular Materials and Engineering, 2018, 303, 1700276.	1.7	7
64	Growth Kinetics of Stacks of Lamellar Polymer Crystals. Macromolecules, 2018, 51, 8738-8745.	2.2	25
65	Controlled Polymerization in Polar Solvents to Ultrahigh Molecular Weight Polyethylene. Journal of the American Chemical Society, 2018, 140, 6685-6689.	6.6	97
66	Free-Radical Dispersion Polymerization of Ethylene with Laponite to Polyethylene–Clay Nanocomposite Particles. Macromolecules, 2018, 51, 4118-4128.	2.2	17
67	Full-Range Interconversion of Nanocrystals and Bulk Metal with a Highly Selective Molecular Catalyst. ACS Catalysis, 2018, 8, 5515-5525.	5.5	12
68	Single-Step Catalytic Upgrading of Microalgae Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 11219-11221.	3.2	9
69	Selective Long-Range Isomerization Carbonylation of a Complex Hyperbranched Polymer Substrate. ACS Catalysis, 2018, 8, 9232-9237.	5.5	19
70	Efficient Emission Enhancement of Single CdSe/CdS/PMMA Quantum Dots through Controlled Near-Field Coupling to Plasmonic Bullseye Resonators. Nano Letters, 2018, 18, 5396-5400.	4.5	25
71	Mechanism of Insertion Polymerization of Allyl Ethers. Macromolecules, 2018, 51, 4525-4531.	2.2	17
72	Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers. Journal of Physical Chemistry Letters, 2017, 8, 690-695.	2.1	12

#	Article	IF	CITATIONS
73	Anisotropic Polymer Nanoparticles with Tunable Emission Wavelengths by Intersegmental Chain Packing. Angewandte Chemie - International Edition, 2017, 56, 6147-6151.	7.2	16
74	Anisotropic Polymer Nanoparticles with Tunable Emission Wavelengths by Intersegmental Chain Packing. Angewandte Chemie, 2017, 129, 6243-6247.	1.6	8
75	Synergetic Effect of Monomer Functional Group Coordination in Catalytic Insertion Polymerization. Journal of the American Chemical Society, 2017, 139, 6823-6826.	6.6	52
76	Chain Multiplication of Fatty Acids to Precise Telechelic Polyethylene. Angewandte Chemie - International Edition, 2017, 56, 7589-7594.	7.2	39
77	Chain Multiplication of Fatty Acids to Precise Telechelic Polyethylene. Angewandte Chemie, 2017, 129, 7697-7702.	1.6	6
78	No Strain, No Gain? Enzymatic Ringâ€Opening Polymerization of Strainless Aliphatic Macrolactones. Macromolecular Rapid Communications, 2017, 38, 1600638.	2.0	21
79	Semicrystalline Long-Chain Polyphosphoesters from Polyesterification. Macromolecules, 2017, 50, 2706-2713.	2.2	9
80	Stereoselective Copolymerization of Butadiene and Functionalized 1,3-Dienes with Neodymium-Based Catalysts. Macromolecules, 2017, 50, 8464-8468.	2.2	34
81	Ultralong-Chain-Spaced Crystalline Poly(H-phosphonate)s and Poly(phenylphosphonate)s. Macromolecules, 2017, 50, 7901-7910.	2.2	21
82	Valorization of Unconventional Lipids from Microalgae or Tall Oil via a Selective Dual Catalysis One-Pot Approach. Journal of the American Chemical Society, 2017, 139, 13487-13491.	6.6	20
83	Mid-chain carboxylic acids by catalytic refining of microalgae oil. Green Chemistry, 2017, 19, 4865-4870.	4.6	12
84	Pentafluorosulfanyl Substituents in Polymerization Catalysis. Journal of the American Chemical Society, 2017, 139, 13786-13790.	6.6	73
85	Ring opening polymerization of macrolactones: high conversions and activities using an yttrium catalyst. Polymer Chemistry, 2017, 8, 5780-5785.	1.9	37
86	Self-assembled monolayer field-effect transistors based on oligo-9,9′-dioctylfluorene phosphonic acids. Nanoscale, 2017, 9, 18584-18589.	2.8	17
87	Purcell effect and photoluminescence emission enhancement of individual CdSe/CdS/PMMA nano particles coupled to metallic bullseye resonators. , 2017, , .		0
88	Biodegradable Core–Multishell Nanocarriers: Influence of Inner Shell Structure on the Encapsulation Behavior of Dexamethasone and Tacrolimus. Polymers, 2017, 9, 316.	2.0	11
89	Lifetime Shortening and Photoluminescence Emission Enhancement of Single CdSe/CdS/PMMA Quantum Emitters Coupled to Plasmonic Bullseye Resonators. , 2017, , .		0
90	Assembling semiconducting molecules by covalent attachment to a lamellar crystalline polymer substrate. Beilstein Journal of Nanotechnology, 2016, 7, 784-798.	1.5	4

#	Article	IF	CITATIONS
91	Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization. Macromolecular Rapid Communications, 2016, 37, 934-938.	2.0	20
92	Nanocrystal Formation in Aqueous Insertion Polymerization. Macromolecules, 2016, 49, 8825-8837.	2.2	17
93	Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. Chemical Reviews, 2016, 116, 4597-4641.	23.0	244
94	Short-Chain Branched Polar-Functionalized Linear Polyethylene via "Tandem Catalysis― Macromolecules, 2016, 49, 4057-4066.	2.2	23
95	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie - International Edition, 2016, 55, 14378-14383.	7.2	64
96	Allylboration as a versatile tool for the in situ post-polymerization functionalization of 1,4-cis-poly(butadiene). Polymer Chemistry, 2016, 7, 7195-7198.	1.9	8
97	Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization. Angewandte Chemie, 2016, 128, 14590-14595.	1.6	25
98	Coupling of Excitons and Discrete Acoustic Phonons in Vibrationally Isolated Quantum Emitters. Nano Letters, 2016, 16, 5861-5865.	4.5	18
99	Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids. ACS Catalysis, 2016, 6, 8229-8238.	5.5	51
100	Aqueous Dispersions of Multiphase Polyolefin Particles. Macromolecules, 2016, 49, 8296-8305.	2.2	8
101	Stereoselective Copolymerization of Butadiene and Functionalized 1,3-Dienes. ACS Macro Letters, 2016, 5, 777-780.	2.3	40
102	CdSe/CdS—Conjugated Polymer Core–Shell Hybrid Nanoparticles by a Grafting-From Approach. ACS Macro Letters, 2016, 5, 786-789.	2.3	12
103	Synthesis of Renewable Copolyacetals with Tunable Degradation. Macromolecular Chemistry and Physics, 2016, 217, 1396-1410.	1.1	19
104	Insertion Polymerization of Divinyl Formal. Macromolecules, 2016, 49, 4395-4403.	2.2	27
105	Reactivity of Functionalized Vinyl Monomers in Insertion Copolymerization. Macromolecules, 2016, 49, 1172-1179.	2.2	44
106	Confined Acoustic Phonon Modes and Exciton-Phonon Coupling in Single CdSe/CdS/PMMA Hybrid Particles. , 2016, , .		0
107	Happy Birthday, Rolf Mülhaupt!. Macromolecular Rapid Communications, 2015, 36, 113-114.	2.0	0
108	Macromol. Rapid Commun. 2/2015. Macromolecular Rapid Communications, 2015, 36, 272-272.	2.0	0

#	Article	IF	CITATIONS
109	Insertion Homo―and Copolymerization of Diallyl Ether. Angewandte Chemie - International Edition, 2015, 54, 15845-15849.	7.2	74
110	Macromol. Rapid Commun. 2/2015. Macromolecular Rapid Communications, 2015, 36, 180-180.	2.0	0
111	Insertion Homo―and Copolymerization of Diallyl Ether. Angewandte Chemie, 2015, 127, 16071-16075.	1.6	22
112	Size Control of Spherical and Anisotropic Fluorescent Polymer Nanoparticles via Precise Rigid Molecules. Macromolecules, 2015, 48, 3900-3906.	2.2	15
113	Probing of chain conformations in conjugated polymer nanoparticles by electron spin resonance spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 32289-32296.	1.3	14
114	Role of Radical Species in Salicylaldiminato Ni(II) Mediated Polymer Chain Growth: A Case Study for the Migratory Insertion Polymerization of Ethylene in the Presence of Methyl Methacrylate. Journal of the American Chemical Society, 2015, 137, 14819-14828.	6.6	46
115	Nonlinear Photoluminescence Spectrum of Single Gold Nanostructures. ACS Nano, 2015, 9, 894-900.	7.3	49
116	Long-Spaced Polyamides: Elucidating the Gap between Polyethylene Crystallinity and Hydrogen Bonding. Macromolecules, 2015, 48, 1463-1472.	2.2	32
117	Suppression of Chain Transfer in Catalytic Acrylate Polymerization via Rapid and Selective Secondary Insertion. Journal of the American Chemical Society, 2015, 137, 2836-2839.	6.6	98
118	Molecularâ€Weightâ€Dependent Changes in Morphology of Solutionâ€Grown Polyethylene Single Crystals. Macromolecular Rapid Communications, 2015, 36, 181-189.	2.0	29
119	Conjugated Star Polymers from Multidirectional Suzuki–Miyaura Polymerization for Live Cell Imaging. Macromolecules, 2015, 48, 483-491.	2.2	28
120	Long-Spaced Polyketones from ADMET Copolymerizations as Ideal Models for Ethylene/CO Copolymers. ACS Macro Letters, 2015, 4, 704-707.	2.3	34
121	Unsymmetrical α,ï‰-Difunctionalized Long-Chain Compounds via Full Molecular Incorporation of Fatty Acids. ACS Catalysis, 2015, 5, 4519-4529.	5.5	36
122	Insights into Functionalâ€Groupâ€Tolerant Polymerization Catalysis with Phosphine–Sulfonamide Palladium(II) Complexes. Chemistry - A European Journal, 2015, 21, 2062-2075.	1.7	24
123	Annealing-induced periodic patterns in solution grown polymer single crystals. RSC Advances, 2015, 5, 12974-12980.	1.7	17
124	Catalytic Isomerizing ω-Functionalization of Fatty Acids. ACS Catalysis, 2015, 5, 5951-5972.	5.5	74
125	Thermoplastic polyester elastomers based on long-chain crystallizable aliphatic hard segments. Polymer Chemistry, 2015, 6, 7133-7137.	1.9	28
126	Nanocomposites of Phosphonicâ€Acidâ€Functionalized Polyethylenes with Inorganic Quantum Dots. Macromolecular Rapid Communications, 2015, 36, 165-173.	2.0	8

#	Article	IF	CITATIONS
127	Conjugated Polymer Composite Nanoparticles by Rapid Mixing. Macromolecular Rapid Communications, 2014, 35, 2038-2042.	2.0	3
128	Saturated Polar‣ubstituted Polyethylene Elastomers from Insertion Polymerization. Advanced Functional Materials, 2014, 24, 387-395.	7.8	50
129	Synthetic Polyester from Algae Oil. Angewandte Chemie - International Edition, 2014, 53, 6800-6804.	7.2	82
130	Composites from Aqueous Polyethylene Nanocrystal/Graphene Dispersions. Macromolecules, 2014, 47, 3017-3021.	2.2	16
131	Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning. Green Chemistry, 2014, 16, 2008.	4.6	81
132	Heterocycle-Substituted Phosphinesulfonato Palladium(II) Complexes for Insertion Copolymerization of Methyl Acrylate. Organometallics, 2014, 33, 2879-2888.	1.1	29
133	Monofunctional Hyperbranched Ethylene Oligomers. Journal of the American Chemical Society, 2014, 136, 2078-2085.	6.6	129
134	A Comprehensive Mechanistic Picture of the Isomerizing Alkoxycarbonylation of Plant Oils. Journal of the American Chemical Society, 2014, 136, 16871-16881.	6.6	114
135	Physical properties and hydrolytic degradability of polyethylene-like polyacetals and polycarbonates. Green Chemistry, 2014, 16, 1816.	4.6	54
136	Solid-Supported Single-Component Pd(II) Catalysts for Polar Monomer Insertion Copolymerization. ACS Catalysis, 2014, 4, 2672-2679.	5.5	39
137	Selective isomerization–carbonylation of a terpene trisubstituted double bond. Green Chemistry, 2014, 16, 4541-4545.	4.6	22
138	Hybrid Nanoparticles by Step-Growth Sonogashira Coupling in Disperse Systems. Langmuir, 2014, 30, 9905-9910.	1.6	6
139	Local Flips and Chain Motion in Polyethylene Crystallites: A Comparison of Melt-Crystallized Samples, Reactor Powders, and Nanocrystals. Macromolecules, 2014, 47, 5163-5173.	2.2	37
140	Postâ€Metallocenes in the Industrial Production of Polyolefins. Angewandte Chemie - International Edition, 2014, 53, 9722-9744.	7.2	418
141	A Direct Approach to Organic/Inorganic Semiconductor Hybrid Particles via Functionalized Polyfluorene Ligands. Advanced Functional Materials, 2014, 24, 2714-2719.	7.8	24
142	Promotion of Selective Pathways in Isomerizing Functionalization of Plant Oils by Rigid Framework Substituents. ChemSusChem, 2014, 7, 3491-3495.	3.6	19
143	Electronic Influences in Phosphinesulfonato Palladium(II) Polymerization Catalysts. Organometallics, 2013, 32, 4516-4522.	1.1	87
144	A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Archives of Toxicology, 2013, 87, 721-733.	1.9	90

#	Article	IF	CITATIONS
145	Stable Singleâ€Photon Emission by Quantum Dot/Polymer Hybrid Particles. Macromolecular Rapid Communications, 2013, 34, 1145-1150.	2.0	18
146	Ideal Polyethylene Nanocrystals. Journal of the American Chemical Society, 2013, 135, 11645-11650.	6.6	71
147	Formation and Evolution of Chainâ€Propagating Species Upon Ethylene Polymerization with Neutral Salicylaldiminato Nickel(II) Catalysts. Chemistry - A European Journal, 2013, 19, 11409-11417.	1.7	14
148	Long-Spaced Aliphatic Polyesters. Macromolecules, 2013, 46, 7213-7218.	2.2	79
149	Anisotropic Polyethylene Nanocrystals Labeled with a Single Fluorescent Dye Molecule: Toward Monitoring of Nanoparticle Orientation. Macromolecules, 2013, 46, 7902-7910.	2.2	19
150	Role of Electron-Withdrawing Remote Substituents in Neutral Nickel(II) Polymerization Catalysts. Organometallics, 2013, 32, 5239-5242.	1.1	56
151	Enhanced Accuracy of Singleâ€Molecule Diffusion Measurements with a Photocleavable Energyâ€Transfer Dyad. Angewandte Chemie - International Edition, 2013, 52, 12435-12438.	7.2	10
152	Enhanced Brightness Emission-Tuned Nanoparticles from Heterodifunctional Polyfluorene Building Blocks. Journal of the American Chemical Society, 2013, 135, 1148-1154.	6.6	67
153	Which Polyesters Can Mimic Polyethylene?. Macromolecular Rapid Communications, 2013, 34, 47-50.	2.0	60
154	Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene. Green Chemistry, 2013, 15, 1112.	4.6	44
155	<i>Ortho</i> -Phosphinobenzenesulfonate: A Superb Ligand for Palladium-Catalyzed Coordination–Insertion Copolymerization of Polar Vinyl Monomers. Accounts of Chemical Research, 2013, 46, 1438-1449.	7.6	471
156	Incorporation of Vinyl Chloride in Insertion Polymerization. Angewandte Chemie - International Edition, 2013, 52, 3963-3966.	7.2	83
157	Large-ring lactones from plant oils. Green Chemistry, 2013, 15, 2361.	4.6	30
158	Concepts for Stereoselective Acrylate Insertion. Journal of the American Chemical Society, 2013, 135, 1026-1036.	6.6	59
159	Precise Microstructure Self-Stabilized Polymer Nanocrystals. ACS Macro Letters, 2013, 2, 125-127.	2.3	26
160	Catalyst Activity and Selectivity in the Isomerising Alkoxycarbonylation of Methyl Oleate. Chemistry - A European Journal, 2013, 19, 17131-17140.	1.7	42
161	Exploring Electronic and Steric Effects on the Insertion and Polymerization Reactivity of Phosphinesulfonato Pd ^{II} Catalysts. Chemistry - A European Journal, 2013, 19, 17773-17788.	1.7	36
162	Mechanistic Features of Isomerizing Alkoxycarbonylation of Methyl Oleate. Journal of the American Chemical Society, 2012, 134, 17696-17703.	6.6	137

#	Article	IF	CITATIONS
163	Polyfluorene Nanoparticles and Quantum Dot Hybrids via Miniemulsion Polymerization. ACS Macro Letters, 2012, 1, 1343-1346.	2.3	33
164	Heterogeneous Diffusion in Thin Polymer Films As Observed by High-Temperature Single-Molecule Fluorescence Microscopy. Journal of the American Chemical Society, 2012, 134, 480-488.	6.6	89
165	Activation and Deactivation of Neutral Palladium(II) Phosphinesulfonato Polymerization Catalysts. Organometallics, 2012, 31, 8388-8406.	1.1	61
166	Controlled Acrylate Insertion Regioselectivity in Diazaphospholidine-Sulfonato Palladium(II) Complexes. Organometallics, 2012, 31, 8505-8515.	1.1	38
167	Fluorescent conjugated block copolymer nanoparticles by controlled mixing. Chemical Communications, 2012, 48, 2104.	2.2	29
168	Biomimetic crystallization of anisotropic zinc oxide nanoparticles in the homogeneous phase: shape control by surface additives applied under thermodynamic or kinetic control. RSC Advances, 2012, 2, 5298.	1.7	17
169	Mechanistic Insights into Polar Monomer Insertion Polymerization from Acrylamides. Journal of the American Chemical Society, 2012, 134, 1010-1018.	6.6	76
170	Anisotropic nanoparticles of precise microstructure polyolefins. Chemical Communications, 2012, 48, 9153.	2.2	3
171	Nanoparticles of Low Optical Band Gap Conjugated Polymers. Macromolecules, 2012, 45, 7799-7805.	2.2	24
172	Long-Chain Polyesters via Chemical Catalytic Conversions of Fatty Acid Esters. ACS Symposium Series, 2012, , 151-164.	0.5	15
173	Limits of Activity: Weakly Coordinating Ligands in Arylphosphinesulfonato Palladium(II) Polymerization Catalysts. Organometallics, 2012, 31, 3128-3137.	1.1	36
174	Long hain Polyacetals From Plant Oils. Macromolecular Rapid Communications, 2012, 33, 1126-1129.	2.0	41
175	Refining of Plant Oils to Chemicals by Olefin Metathesis. Angewandte Chemie - International Edition, 2012, 51, 5802-5808.	7.2	185
176	Polymer precursors from catalytic reactions of natural oils. Green Chemistry, 2012, 14, 472-477.	4.6	97
177	Morphological changes during annealing of polyethylene nanocrystals. European Physical Journal E, 2012, 35, 1-12.	0.7	11
178	The Origin of Living Polymerization with an <i>o</i> â€Fluorinated Catalyst: NMR Spectroscopic Characterization of Chain arrying Species. Chemistry - A European Journal, 2012, 18, 848-856.	1.7	39
179	Single molecule fluorescence microscopy investigations on heterogeneity of translational diffusion in thin polymer films. Physical Chemistry Chemical Physics, 2011, 13, 1770-1775.	1.3	33
180	Long-Chain Linear C ₁₉ and C ₂₃ Monomers and Polycondensates from Unsaturated Fatty Acid Esters. Macromolecules, 2011, 44, 4159-4166.	2.2	178

#	Article	IF	CITATIONS
181	Annealing of Single Lamella Nanoparticles of Polyethylene. Macromolecules, 2011, 44, 4845-4851.	2.2	39
182	Aliphatic Longâ€Chain C ₂₀ Polyesters from Olefin Metathesis. Macromolecular Rapid Communications, 2011, 32, 1352-1356.	2.0	84
183	Polymerization Catalyst Laserâ€Interference Patterning. Angewandte Chemie - International Edition, 2011, 50, 9665-9667.	7.2	0
184	Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8955-8959.	3.3	77
185	Linear Semicrystalline Polyesters from Fatty Acids by Complete Feedstock Molecule Utilization. Angewandte Chemie - International Edition, 2010, 49, 4306-4308.	7.2	185
186	Catalytic cyclopropanation of polybutadienes. Journal of Polymer Science Part A, 2010, 48, 4439-4444.	2.5	17
187	Nanoparticles of Conjugated Polymers. Chemical Reviews, 2010, 110, 6260-6279.	23.0	655
188	Noncovalent Interactions ino-Fluorinated Post-titanocene Living Ethylene Polymerization Catalyst. Organometallics, 2010, 29, 4428-4430.	1.1	49
189	Reactivity of Methacrylates in Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 16623-16630.	6.6	75
190	Mechanistic Insights on Acrylate Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 4418-4426.	6.6	101
191	Aqueous Poly(arylacetylene) Dispersions. Macromolecules, 2010, 43, 8718-8723.	2.2	35
192	Functionalization of Polymer Nanoparticles by Thiolâ^'Ene Addition. Macromolecules, 2010, 43, 8071-8078.	2.2	49
193	Catalytic Copolymerization of Ethylene with Vinyl Sulfones. Macromolecules, 2010, 43, 3589-3590.	2.2	63
194	Tailor-Made Conjugated Polymer Nanoparticles for Multicolor and Multiphoton Cell Imaging. Biomacromolecules, 2010, 11, 2776-2780.	2.6	93
195	Direct Synthesis of Ethyleneâ^'Acrylic Acid Copolymers by Insertion Polymerization. Journal of the American Chemical Society, 2010, 132, 17690-17691.	6.6	129
196	Alkoxycarbonylation of ethylene with cellulose in ionic liquids. Chemical Communications, 2010, 46, 4980.	2.2	14
197	Zirconium enolatoimine complexes in olefin polymerization. Dalton Transactions, 2010, 39, 4612.	1.6	12
198	Submicron films prepared from aqueous dispersions of nanoscale polymer crystals. Journal of Polymer Science Part A, 2009, 47, 6420-6432.	2.5	3

#	Article	IF	CITATIONS
199	Fluorescent Conjugated Polymer Nanoparticles by Polymerization in Miniemulsion. Journal of the American Chemical Society, 2009, 131, 14267-14273.	6.6	179
200	Renewable resource-based poly(dodecyloate) by carbonylation polymerization. Chemical Communications, 2009, , 5400.	2.2	34
201	Ethylene polymerization in supercritical carbon dioxide with binuclear nickel(ii) catalysts. Dalton Transactions, 2009, , 8929.	1.6	29
202	Water-Soluble Complexes [(κ2-P,O-Phosphinesulfonato)PdMe(L)] and Their Catalytic Properties. Organometallics, 2009, 28, 4072-4078.	1.1	24
203	Catalytic Polymerization in Dense CO ₂ to Controlled Microstructure Polyethylenes. Macromolecules, 2009, 42, 8157-8164.	2.2	30
204	Variable Crystallinity Polyethylene Nanoparticles. Macromolecules, 2009, 42, 3669-3673.	2.2	16
205	Mechanistic Insights on the Copolymerization of Polar Vinyl Monomers with Neutral Ni(II) Catalysts. Journal of the American Chemical Society, 2009, 131, 12613-12622.	6.6	78
206	Unusual Reactivity of <i>N</i> , <i>N</i> , <i>N′</i> , <i>N</i> ′-Tetramethylethylenediamine-Coordinated Neutral Nickel(II) Polymerization Catalysts. Organometallics, 2009, 28, 4048-4055.	1.1	13
207	Insertion Polymerization of Acrylate. Journal of the American Chemical Society, 2009, 131, 422-423.	6.6	261
208	Deactivation Pathways of Neutral Ni(II) Polymerization Catalysts. Journal of the American Chemical Society, 2009, 131, 1565-1574.	6.6	96
209	Conveniently Accessible Polymer Nanoparticles of Adjustable Polarity. Langmuir, 2009, 25, 10554-10557.	1.6	4
210	Encapsulating of single quantum dots into polymer particles. Colloid and Polymer Science, 2008, 286, 1329-1334.	1.0	28
211	Coordination Copolymerization of Polar Vinyl Monomers H ₂ CCHX. Angewandte Chemie - International Edition, 2008, 47, 2538-2542.	7.2	192
212	Crystalline Polymer Ultrathin Films from Mesoscopic Precursors. Angewandte Chemie - International Edition, 2008, 47, 4509-4511.	7.2	9
213	Patterning of Polymers on a Substrate via Inkâ€Jet Printing of a Coordination Polymerization Catalyst. Advanced Materials, 2008, 20, 1978-1981.	11.1	10
214	Catalytic Polymerization of Butadiene in Aqueous Systems with Cationic Nickel(II) Complexes. Macromolecules, 2008, 41, 8332-8338.	2.2	17
215	Highly Active Binuclear Neutral Nickel(II) Catalysts Affording High Molecular Weight Polyethylene. Organometallics, 2008, 27, 1399-1408.	1.1	66
216	Control of molecular weight in Ni(ii)-catalyzed polymerization via the reaction medium. Chemical Communications, 2008, , 4965.	2.2	62

#	Article	IF	CITATIONS
217	Extremely Narrow-Dispersed High Molecular Weight Polyethylene from Living Polymerization at Elevated Temperatures with <i>o</i> -F Substituted Ti Enolatoimines. Journal of the American Chemical Society, 2008, 130, 13204-13205.	6.6	91
218	Crystallization as a Means for the Switching of Nanoscale Containers. Langmuir, 2008, 24, 2341-2347.	1.6	18
219	Nanoparticle-Supported Molecular Polymerization Catalysts. Macromolecules, 2008, 41, 8388-8396.	2.2	27
220	Single Lamella Nanoparticles of Polyethylene. Nano Letters, 2007, 7, 2024-2029.	4.5	111
221	Nanoparticles from Step-Growth Coordination Polymerization. Macromolecules, 2007, 40, 7733-7735.	2.2	73
222	Substituent Effects in (κ2-N,O)-Salicylaldiminato Nickel(II)â^'Methyl Pyridine Polymerization Catalysts:Â Terphenyls Controlling Polyethylene Microstructures. Organometallics, 2007, 26, 2348-2362.	1.1	97
223	Nickel(II)â^'Methyl Complexes with Water-Soluble Ligands L [(salicylaldiminato-κ2N,O)NiMe(L)] and Their Catalytic Properties in Disperse Aqueous Systems. Organometallics, 2007, 26, 1311-1316.	1.1	43
224	Synthesis of Aqueous Polyethylene Dispersions with Electron-Deficient Neutral Nickel(II) Catalysts with Enolatoimine Ligands. Macromolecules, 2007, 40, 421-428.	2.2	44
225	Ceneral Approach for the Synthesis of Organicâ ``Inorganic Hybrid Nanoparticles Mediated by Supercritical CO ₂ . Journal of the American Chemical Society, 2007, 129, 10602-10606.	6.6	48
226	Polymer Microstructure Control in Catalytic Polymerization Exclusively by Electronic Effects of Remote Substituents. Advanced Synthesis and Catalysis, 2007, 349, 2307-2316.	2.1	43
227	Hydroformylation with Dendriticâ€Polymerâ€Stabilized Rhodium Colloids as Catalyst Precursors. Macromolecular Chemistry and Physics, 2007, 208, 1688-1693.	1.1	25
228	Polymer dispersions from catalytic polymerization in aqueous systems. Colloid and Polymer Science, 2007, 285, 605-619.	1.0	56
229	Silica/Polyethylene Nanocomposite Particles from Catalytic Emulsion Polymerization. Macromolecules, 2006, 39, 2056-2062.	2.2	72
230	Synthesis of Very Small Polymer Particles by Catalytic Polymerization in Aqueous Systems. Macromolecular Symposia, 2006, 236, 117-123.	0.4	15
231	Aqueous Dispersions of Polypropylene and Poly(1-butene) with Variable Microstructures Formed with Neutral Nickel(II) Complexes. Macromolecules, 2006, 39, 5963-5964.	2.2	40
232	Water-Soluble Salicylaldiminato Ni(II)â^'Methyl Complexes:Â Enhanced Dissociative Activation for Ethylene Polymerization with Unprecedented Nanoparticle Formation. Journal of the American Chemical Society, 2006, 128, 7708-7709.	6.6	111
233	Copolymerization of Ethylene with 1-Butene and Norbornene to Higher Molecular Weight Copolymers in Aqueous Emulsion. Macromolecules, 2006, 39, 5995-6002.	2.2	66
234	Dendritic Coreâ^'Shell Macromolecules Soluble in Supercritical Carbon Dioxide. Macromolecules, 2006, 39, 3978-3979.	2.2	21

#	Article	IF	CITATIONS
235	Catalytic Ethylene Polymerisation in Carbon Dioxide as a Reaction Medium with Soluble Nickel(II) Catalysts. Chemistry - A European Journal, 2006, 12, 6110-6116.	1.7	36
236	Mechanistic Studies of Catalytic Polyethylene Chain Growth in the Presence of Water. Angewandte Chemie - International Edition, 2006, 45, 6044-6046.	7.2	27
237	Processing of Polyacetylene from Aqueous Nanoparticle Dispersions. Angewandte Chemie - International Edition, 2006, 45, 6314-6317.	7.2	34
238	Pyrazolate-Based Dinuclear α-Diimine-Type Palladium(II) and Nickel(II) Complexes – a Bimetallic Approach in Olefin Polymerisation. Advanced Synthesis and Catalysis, 2006, 348, 887-897.	2.1	54
239	Aqueous Dispersions of Extraordinarily Small Polyethylene Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 429-432.	7.2	50
240	Disperse Amphiphilic Submicron Particles as Non-Covalent Supports for Cationic Homogeneous Catalysts. Advanced Synthesis and Catalysis, 2005, 347, 633-636.	2.1	21
241	Synthesis and properties of highly branched polycations with an aliphatic polyether scaffold. Journal of Polymer Science Part A, 2005, 43, 4609-4617.	2.5	22
242	Synthesis of Submicrometer Particles of a Stereoregular Polyolefin by Catalysis in Aqueous Dispersion. Macromolecules, 2005, 38, 220-222.	2.2	7
243	Coreâ^'Shell-Structured Highly Branched Poly(ethylenimine amide)s:Â Synthesis and Structure. Macromolecules, 2005, 38, 5914-5920.	2.2	48
244	Possible Side Reactions Due to Water in Emulsion Polymerization by Late Transition Metal Complexes. 1. Water Complexation and Hydrolysis of the Growing Chain. Inorganic Chemistry, 2005, 44, 7806-7818.	1.9	26
245	Controlled, Copper-Catalyzed Functionalization of Polyolefins. Macromolecules, 2005, 38, 4966-4969.	2.2	55
246	Recoverable Catalysts Noncovalently Bound to a Hyperbranched Polyelectrolyte. Organometallics, 2005, 24, 3758-3763.	1.1	15
247	1,2-Polybutadiene Latices by Catalytic Polymerization in Aqueous Emulsion. Macromolecules, 2005, 38, 5393-5399.	2.2	38
248	A General Route to Very Small Polymer Particles with Controlled Microstructures. Journal of the American Chemical Society, 2005, 127, 14568-14569.	6.6	58
249	Possible Side Reactions Due to Water in Emulsion Polymerization by Late Transition Metal Complexes II: Deactivation of the Catalyst by a Wacker-Type Reaction. Organometallics, 2005, 24, 2679-2687.	1.1	30
250	Nature or Petrochemistry?—Biologically Degradable Materials. Angewandte Chemie - International Edition, 2004, 43, 1078-1085.	7.2	531
251	Remote Substituents Controlling Catalytic Polymerization by Very Active and Robust Neutral Nickel(II) Complexes. Angewandte Chemie - International Edition, 2004, 43, 869-873.	7.2	159
252	Shape-Selective Synthesis of Palladium Nanoparticles Stabilized by Highly Branched Amphiphilic Polymers. Advanced Functional Materials, 2004, 14, 999-1004.	7.8	81

#	Article	IF	CITATIONS
253	Multiphase Polymer Dispersions and Nanocomposites by Catalytic/Free Radical Emulsion Polymerization. Macromolecular Rapid Communications, 2004, 25, 1824-1828.	2.0	6
254	Nature or Petrochemistry? — Biologically Degradable Materials. ChemInform, 2004, 35, no.	0.1	0
255	Solution Structure of Metal Particles Prepared in Unimolecular Reactors of Amphiphilic Hyperbranched Macromolecules. Macromolecules, 2004, 37, 7893-7900.	2.2	45
256	Hyperbranched Polymers:Â Structure of Hyperbranched Polyglycerol and Amphiphilic Poly(glycerol) Tj ETQq0 0 0	rgBT /Ove 2.2	rlock 10 Tf 5
257	Catalysis with Soluble Hybrids of Highly Branched Macromolecules with Palladium Nanoparticles in a Continuously Operated Membrane Reactor. Advanced Synthesis and Catalysis, 2003, 345, 333-336.	2.1	65
258	Catalytic Polymerization of Ethylene in Aqueous Emulsion with a Simple in Situ Catalystâ€. Macromolecules, 2003, 36, 6711-6715.	2.2	53

259	Submicron Polyethylene Particles from Catalytic Emulsion Polymerization. Journal of the American Chemical Society, 2003, 125, 8838-8840.	6.6	67
260	Aqueous Polyketone Latices Prepared with Water-Insoluble Palladium(II) Catalysts. Macromolecules, 2002, 35, 3342-3347.	2.2	38
261	Ethylene Polymerization by Novel, Easily Accessible Catalysts Based on Nickel(II) Diazene Complexes. Macromolecules, 2002, 35, 6071-6073.	2.2	41
262	Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chemical Communications, 2002, , 3018-3019.	2.2	329
263	Aqueous Catalytic Polymerization of Olefins. Angewandte Chemie - International Edition, 2002, 41, 544-561.	7.2	178
264	Synthesis, characterisation and catalytic activity of Pd(II) and Ni(II) complexes with new cyclic α-diphenylphosphino-ketoimines. Crystal structure of 2,6-diisopropyl-N-(2-diphenylphosphino-cyclopentylidene)aniline and of 2,6-diisopropyl-N-(2-diphenylphosphino-cyclohexylidene)aniline. Journal of Organometallic Chemistry, 2002 662 150-171	0.8	63
265	Aqueous Homo- and Copolymerization of Ethylene by Neutral Nickel(II) Complexes. Macromolecules, 2001, 34, 1165-1171.	2.2	177
266	Carbohydrate analogue polymers by ring opening metathesis polymerisation (ROMP) and subsequent catalytic dihydroxylation. Chemical Communications, 2001, , 855-856.	2.2	36
267	Immobilization of a Catalytically Active Rhodium Complex by Electrostatic Interactions of Multiply Charged Phosphine Ligands with a Soluble Polyelectrolyte and Recovery by Ultrafiltration. Organometallics, 2001, 20, 5504-5506.	1.1	40
268	Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground. Angewandte Chemie - International Edition, 2001, 40, 534-540.	7.2	408
269	High Molecular Mass Polyethylene Aqueous Latexes by Catalytic Polymerization. Angewandte Chemie - International Edition, 2001, 40, 3020-3022.	7.2	116
270	Olefin Polymerization by Late Transition Metal Complexes—A Root of Ziegler Catalysts Gains New Ground. Angewandte Chemie - International Edition, 2001, 40, 534-540.	7.2	5

#	Article	IF	CITATIONS
271	Coordination Polymerization in Water Affording Amorphous Polyethylenes. Chemistry - A European Journal, 2000, 6, 4623-4629.	1.7	75
272	Core-Shell Microspheres of a Catalytically Active Rhodium Complex Bound to a Polyelectrolyte-Coated Latex. Advanced Materials, 2000, 12, 953-956.	11.1	32
273	Cationic nickel and palladium complexes with bidentate ligands for the Cî—,C linkage of olefins. Coordination Chemistry Reviews, 2000, 203, 325-351.	9.5	320
274	Coordination polymerization of ethylene in water by Pd(ii) and Ni(ii) catalysts. Chemical Communications, 2000, , 301-302.	2.2	120
275	Preparation of Catalytically Active Palladium Nanoclusters in Compartments of Amphiphilic Hyperbranched Polyglycerols. Macromolecules, 2000, 33, 3958-3960.	2.2	102
276	Reactor blending with early/late transition metal catalyst combinations in ethylene polymerization. Macromolecular Rapid Communications, 1999, 20, 139-143.	2.0	54
277	Mechanistic Studies of the Palladium-Catalyzed Copolymerization of Ethylene and α-Olefins with Methyl Acrylate. Journal of the American Chemical Society, 1998, 120, 888-899.	6.6	924
278	Cationic Palladium η3-Allyl Complexes with Hemilabile P,O-Ligands:  Synthesis and Reactivity. Insertion of Ethylene into the Pdâ"Allyl Function. Organometallics, 1996, 15, 2650-2656.	1.1	96
279	Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts. Journal of the American Chemical Society, 1996, 118, 267-268.	6.6	1,270
280	Palladium Catalyzed Alternating Cooligomerization of Ethylene and Carbon Monoxide to Unsaturated Ketones. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1995, 50, 430-438.	0.3	48
281	Multinuclear NMR Studies and Reaction with tert-Butyl Isocyanide of Dinuclear Tungsten- or Molybdenum-Palladium .muAlkylidene Complexes. X-ray Structure of [Pdl[.muC(p-tolyl)dmba][.muCO]Mo(Cp)(CN-t-Bu)2]. Organometallics, 1995, 14, 1637-1645.	1.1	26
282	Hemilabile P,O-ligands in palladium catalysed C–C linkages: codimerization of ethylene and styrene and cooligomerization of ethylene and carbon monoxide. Journal of the Chemical Society Chemical Communications, 1993, .	2.0	77
283	Enhanced Determination of Emission Fine Structure and Orientation of Individual Quantum Dots Based on Correction Algorithm for Spectral Diffusion. Journal Physics D: Applied Physics, 0, , .	1.3	1
284	Decoupled Cation Transport within Layered Assemblies in Sulfonated and Crystalline Telechelic Polyethylenes. Macromolecules, 0, , .	2.2	4