
Makoto Yasuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5562909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Carbon–Carbon Bond Formation from Alcohols and Active Methylenes, Alkoxyketones, or Indoles Catalyzed by Indium Trichloride. Angewandte Chemie - International Edition, 2006, 45, 793-796.	7.2	284
2	Direct Reduction of Alcohols:Â Highly Chemoselective Reducing System for Secondary or Tertiary Alcohols Using Chlorodiphenylsilane with a Catalytic Amount of Indium Trichloride. Journal of Organic Chemistry, 2001, 66, 7741-7744.	1.7	187
3	Direct Substitution of the Hydroxy Group in Alcohols with Silyl Nucleophiles Catalyzed by Indium Trichloride. Angewandte Chemie - International Edition, 2004, 43, 1414-1416.	7.2	151
4	Direct Coupling Reaction between Alcohols and Silyl Compounds:Â Enhancement of Lewis Acidity of Me3SiBr Using InCl3. Journal of Organic Chemistry, 2006, 71, 8516-8522.	1.7	142
5	In Situ Observation of Nonequilibrium Local Heating as an Origin of Special Effect of Microwave on Chemistry. Journal of Physical Chemistry C, 2010, 114, 8965-8970.	1.5	116
6	Catalytic Generation of Indium Hydride in a Highly Diastereoselective Reductive Aldol Reaction. Angewandte Chemie - International Edition, 2004, 43, 711-714.	7.2	100
7	Open-Shell and Antiaromatic Character Induced by the Highly Symmetric Geometry of the Planar Heptalene Structure: Synthesis and Characterization of a Nonalternant Isomer of Bisanthene. Journal of the American Chemical Society, 2019, 141, 10165-10170.	6.6	94
8	Cross-Coupling Reaction of α-Chloroketones and Organotin Enolates Catalyzed by Zinc Halides for Synthesis of γ-Diketones. Journal of the American Chemical Society, 2002, 124, 7440-7447.	6.6	93
9	Indium-Catalyzed Direct Chlorination of Alcohols Using Chlorodimethylsilaneâ^'Benzil as a Selective and Mild System. Journal of the American Chemical Society, 2004, 126, 7186-7187.	6.6	92
10	Breathing New Life into Nonalternant Hydrocarbon Chemistry: Syntheses and Properties of Polycyclic Hydrocarbons Containing Azulene, Pentalene, and Heptalene Frameworks. Chemistry Letters, 2021, 50, 195-212.	0.7	88
11	Preparation of a novel indium hydride and application to practical organic synthesis. Tetrahedron Letters, 1998, 39, 1929-1932.	0.7	79
12	Synthesis and Characterization of Dibenzo[<i>a</i> , <i>f</i>]pentalene: Harmonization of the Antiaromatic and Singlet Biradical Character. Journal of the American Chemical Society, 2017, 139, 15284-15287.	6.6	78
13	Practical and Simple Synthesis of Substituted Quinolines by an HClâ^'DMSO System on a Large Scale: Remarkable Effect of the Chloride Ion. Journal of Organic Chemistry, 2006, 71, 800-803.	1.7	77
14	Regio―and Stereoselective Generation of Alkenylindium Compounds from Indium Tribromide, Alkynes, and Ketene Silyl Acetals. Angewandte Chemie - International Edition, 2009, 48, 4577-4580.	7.2	75
15	Direct Conversion of Carbonyl Compounds into Organic Halides:Â Indium(III) Hydroxide-Catalyzed Deoxygenative Halogenation Using Chlorodimethylsilane. Journal of the American Chemical Society, 2002, 124, 13690-13691.	6.6	73
16	Indium(III) Chloride/Chlorotrimethylsilane as a Highly Active Lewis Acid Catalyst System for the Sakuraiâ^'Hosomi Reaction. European Journal of Organic Chemistry, 2002, 2002, 1578-1581.	1.2	72
17	Solvent-controlled addition of alkynyltins or allylic tins to aldehydes catalyzed by indium trichloride. Tetrahedron Letters, 1995, 36, 9497-9500.	0.7	69
18	Photoredox-Catalyzed C–F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position. Journal of the American Chemical Society, 2021, 143, 9308-9313.	6.6	67

#	Article	IF	CITATIONS
19	Esters as Acylating Reagent in a Friedelâ^'Crafts Reaction: Indium Tribromide Catalyzed Acylation of Arenes Using Dimethylchlorosilane. Journal of Organic Chemistry, 2008, 73, 9465-9468.	1.7	66
20	Diastereoselective Addition of γ-Substituted Allylic Nucleophiles to Ketones: Highly Stereoselective Synthesis of Tertiary Homoallylic Alcohols Using an Allylic Tributylstannane/Stannous Chloride System. Journal of the American Chemical Society, 2002, 124, 13442-13447.	6.6	58
21	αâ€Alkylation of Carbonyl Compounds by Direct Addition of Alcohols to Enol Acetates. Angewandte Chemie - International Edition, 2009, 48, 9131-9134.	7.2	57
22	In- or In(I)-Employed Tailoring of the Stereogenic Centers in the Reformatsky-Type Reactions of Simple Ketones, α-Alkoxy Ketones, and β-Keto Esters. Journal of Organic Chemistry, 2005, 70, 10408-10419.	1.7	55
23	NMR Studies of Five-Coordinate Tin Enolate: An Efficient Reagent for Halo Selective Reaction toward .alphaHalo Ketone or .alphaHalo Imine. Journal of Organic Chemistry, 1994, 59, 4386-4392.	1.7	54
24	Synthesis of 1,4-Dicarbonyl Compounds from Silyl Enol Ethers and Bromocarbonyls, Catalyzed by an Organic Dye under Visible-Light Irradiation with Perfect Selectivity for the Halide Moiety over the Carbonyl Group. Organic Letters, 2016, 18, 5704-5707.	2.4	54
25	Remarkable enhancement of Lewis acidity of chlorosilane by the combined use of indium(III) chloride. Tetrahedron, 2002, 58, 8227-8235.	1.0	53
26	Direct coupling of alcohols with alkenylsilanes catalyzed by indium trichloride or bismuth tribromide. Chemical Communications, 2008, , 6396.	2.2	53
27	Synthesis of a Wide Range of Thioethers by Indium Triiodide Catalyzed Direct Coupling between Alkyl Acetates and Thiosilanes. Organic Letters, 2012, 14, 1846-1849.	2.4	53
28	Selective reduction of acid chloride with a catalytic amount of an indium compound. Tetrahedron Letters, 2000, 41, 113-116.	0.7	52
29	Michael Addition of Stannyl Ketone Enolate to α,β-Unsaturated Esters Catalyzed by Tetrabutylammonium Bromide and an ab Initio Theoretical Study of the Reaction Course. Journal of the American Chemical Society, 2003, 125, 7291-7300.	6.6	52
30	Enhancement of Antiaromatic Character via Additional Benzoannulation into Dibenzo[<i>a</i> , <i>f</i>]pentalene: Syntheses and Properties of Benzo[<i>a</i>]naphtho[2,1- <i>f</i>]pentalene and Dinaphtho[2,1- <i>a</i> , <i>f</i>]pentalene. Journal of the American Chemical Society, 2019, 141, 560-571.	6.6	52
31	Bis-periazulene (Cyclohepta[<i>def</i>]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives. Journal of the American Chemical Society, 2022, 144, 3370-3375.	6.6	50
32	Coupling Reaction of Alkyl Chlorides with Silyl Enolates Catalyzed by Indium Trihalide. Organic Letters, 2007, 9, 4931-4934.	2.4	48
33	InCl ₃ /I ₂ -Catalyzed Cross-Coupling of Alkyl Trimethylsilyl Ethers and Allylsilanes via an in Situ Derived Combined Lewis Acid of InCl ₃ and Me ₃ Sil. Journal of Organic Chemistry, 2007, 72, 8588-8590.	1.7	46
34	In(III)-Mediated Chemoselective Dehydrogenative Interaction of ClMe2SiH with Carboxylic Acids:Â Direct Chemo- and Regioselective Friedelâ^′Crafts Acylation of Aromatic Ethers. Organic Letters, 2007, 9, 405-408.	2.4	45
35	InCl ₃ /Me ₃ SiBr-Catalyzed Direct Coupling between Silyl Ethers and Enol Acetates. Organic Letters, 2011, 13, 2762-2765.	2.4	44
36	Highly Controlled Chemoselectivity of Tin Enolate by Its Hybridization State. Anionic Complex of Tin Enolate Coordinated by Tetrabutylammonium Bromide as Halo Selective Reagent. Journal of the American Chemical Society, 1998, 120, 715-721.	6.6	43

#	Article	IF	CITATIONS
37	Construction of Polycyclic π onjugated Systems Incorporating an Azulene Unit Following the Oxidation of 1,8â€Diphenylâ€9,10ã€bis(phenylethynyl)phenanthrene. Chemistry - A European Journal, 2018, 24, 8548-8552.	1.7	43
38	Isolation and Characterization of a Nucleophilic Allylic Indium Reagent. Organometallics, 2009, 28, 1998-2000.	1.1	42
39	Regioselective Carboindation of Simple Alkenes with Indium Tribromide and Ketene Silyl Acetals. Organic Letters, 2010, 12, 3390-3393.	2.4	41
40	Indium compound-catalyzed deoxygenative allylation of aromatic ketones by a hydrosilane–allylsilane system. Tetrahedron Letters, 2000, 41, 2425-2428.	0.7	40
41	Cage-Shaped Borate Esters with Enhanced Lewis Acidity and Catalytic Activity. Organic Letters, 2006, 8, 761-764.	2.4	40
42	Indium Triiodide Catalyzed Reductive Functionalization of Amides via the Single-Stage Treatment of Hydrosilanes and Organosilicon Nucleophiles. Organic Letters, 2013, 15, 3452-3455.	2.4	39
43	The reductive amination of aldehydes and ketones by catalytic use of dibutylchlorotin hydride complex. Chemical Communications, 2006, , 4189.	2.2	38
44	Indium Tribromide Catalyzed Crossâ€Claisen Condensation between Carboxylic Acids and Ketene Silyl Acetals Using Alkoxyhydrosilanes. Angewandte Chemie - International Edition, 2011, 50, 8623-8625.	7.2	37
45	In- or In(I)-Employed Diastereoselective Reformatsky-Type Reactions with Ketones: 1H NMR Investigations on the Active Species. Organic Letters, 2004, 6, 4475-4478.	2.4	36
46	High Chelation Control of Three Contiguous Stereogenic Centers in the Reformatsky Reactions of Indium Enolates with α-Hydroxy Ketones:  Unexpected Stereochemistry of Lactone Formation. Organic Letters, 2006, 8, 3029-3032.	2.4	36
47	Characterization of the Nucleophilic Allylindium Species Generated from Allyl Bromide and Indium(0) in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5359-5363.	1.2	35
48	Selective oxymetalation of terminal alkynes <i>via</i> 6- <i>endo</i> cyclization: mechanistic investigation and application to the efficient synthesis of 4-substituted isocoumarins. Chemical Science, 2018, 9, 6041-6052.	3.7	35
49	An ab Initio Computational Study on the Reaction of Organotin Enolates:  Comparison of Highly Coordinated Tin Reagent with Noncoordinated Reagent. Journal of the American Chemical Society, 2000, 122, 7549-7555.	6.6	34
50	Bu ₂ SnIH-Promoted Proximal Bond Cleavage of Methylenecyclopropanes and Successive Radical Cyclization and/or Pd-Catalyzed Coupling Reaction. Journal of the American Chemical Society, 2008, 130, 2912-2913.	6.6	34
51	Reaction of alcohols and silyl ethers in the presence of an indium/silicon-based catalyst system: Deoxygenation and allyl substitution. Pure and Applied Chemistry, 2008, 80, 845-854.	0.9	33
52	Carbogallation of Alkynes Using Gallium Tribromide and Silyl Ketene Acetals and Synthetic Application to Crossâ€Coupling with Aryl Iodides. Chemistry - A European Journal, 2011, 17, 11135-11138.	1.7	33
53	Regio―and Stereoselective Carbobismuthination of Alkynes. Angewandte Chemie - International Edition, 2012, 51, 1051-1054.	7.2	33
54	Indium Chloride Catalyzed Alkylative Rearrangement of Propargylic Acetates Using Alkyl Chlorides, Alcohols, and Acetates: Facile Synthesis of α-Alkyl-α,β-Unsaturated Carbonyl Compounds. Organic Letters, 2014, 16, 1176-1179.	2.4	33

#	Article	IF	CITATIONS
55	The First Michael Addition of Metal Ketone Enolates to α,β-Unsaturated Esters under Catalytic Conditions:Â Tin Enolate with a Catalytic Amount of Tetrabutylammonium Bromide. Journal of Organic Chemistry, 1999, 64, 2180-2181.	1.7	32
56	Diastereoselective Production of Homoallylic Alcohols Bearing Quaternary Centers from Î ³ -Substituted Allylic Indiums and Ketones. Journal of Organic Chemistry, 2007, 72, 10264-10267.	1.7	32
57	Hydroindation of allenes and its application to radical cyclization. Organic and Biomolecular Chemistry, 2008, 6, 1949.	1.5	32
58	Insertion of Diazo Esters into C–F Bonds toward Diastereoselective One-Carbon Elongation of Benzylic Fluorides: Unprecedented BF ₃ Catalysis with C–F Bond Cleavage and Re-formation. Journal of the American Chemical Society, 2021, 143, 20616-20621.	6.6	32
59	Allylation of Unactivated Ketones by Tetraallyltin Accelerated by Phenol. Application to Asymmetric Allylation Using a Tetraallyltin-BINOL System. Chemistry Letters, 1998, 27, 743-744.	0.7	31
60	Allylic Tantalums as Highly Imine-Selective Reagents. Journal of Organic Chemistry, 2004, 69, 2185-2187.	1.7	31
61	Generation of Allylic Indium by Hydroindation of 1,3-Dienes and One-Pot Reaction with Carbonyl Compounds. Organic Letters, 2006, 8, 4553-4556.	2.4	31
62	Isolation and Crystallographic Characterization of Allylindium Species Generated from Allyl Halide and Indium(0). European Journal of Organic Chemistry, 2009, 2009, 5513-5517.	1.2	30
63	Gallium Tribromide Catalyzed Coupling Reaction of Alkenyl Ethers with Ketene Silyl Acetals. Angewandte Chemie - International Edition, 2012, 51, 8073-8076.	7.2	30
64	Allylic tin(IV)-tin(II) chloride-acetonitrile as a novel system for allylation of carbonyls or imines. Tetrahedron Letters, 1996, 37, 5951-5954.	0.7	29
65	Indium Triiodide (InI3)-Catalyzed Allylation of Carbonyl Compounds by Allylic Tins. Synlett, 1997, 1997, 699-700.	1.0	29
66	Recognition of Aromatic Compounds by Ï€â€Pocket within a Cageâ€ S haped Borate Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3867-3870.	7.2	28
67	Synthesis of 1,4-Diketones: Unusual Coupling of Tin Enolates with α-Chloro Ketones Catalyzed by Zinc Halides. Journal of Organic Chemistry, 1997, 62, 8282-8283.	1.7	27
68	Direct Synthesis of Alkynylstannanes: ZnBr ₂ Catalyst for the Reaction of Tributyltin Methoxide and Terminal Alkynes. Angewandte Chemie - International Edition, 2011, 50, 10393-10396.	7.2	27
69	Facile control of regioselectivity in the reaction of tin enolates with \hat{I}_{\pm} -halogeno carbonyls by additives. Journal of the Chemical Society Perkin Transactions 1, 1993, , 859-865.	0.9	26
70	Microwave-Irradiated Transition-Metal Catalysis: Rapid and Efficient Dehydrative Carbon-Carbon Coupling of Alcohols with Active Methylenes. Synthesis, 2008, 2008, 1717-1724.	1.2	26
71	Indium-catalyzed coupling reaction between silyl enolates and alkyl chlorides or alkyl ethers. Tetrahedron, 2009, 65, 5462-5471.	1.0	26
72	Cage‧haped Borate Esters with Tris(2â€oxyphenyl)methane or â€silane System Frameworks Bearing Multiple Tuning Factors: Geometric and Substituent Effects on Their Lewis Acid Properties. Chemistry - A European Journal, 2011, 17, 3856-3867.	1.7	26

#	Article	IF	CITATIONS
73	Direct Use of Esters in the Mukaiyama Aldol Reaction: A Powerful and Convenient Alternative to Aldehydes. Organic Letters, 2012, 14, 1168-1171.	2.4	26
74	InCl ₃ /Me ₃ SiCl-Catalyzed Direct Michael Addition of Enol Acetates to α,β-Unsaturated Ketones. Organic Letters, 2012, 14, 5788-5791.	2.4	25
75	Regioselective Synthesis of 5-Metalated 2-Pyrones by Intramolecular Oxymetalation of Carbonyl-ene-yne Compounds Using Indium Trihalide. Journal of Organic Chemistry, 2019, 84, 14330-14341.	1.7	25
76	One-Pot Synthesis of Nitrogen Heterocycles Initiated by Regio- and Diastereoselective Carbonâ^'Carbon Bond Formation of Bifunctional Carbonyl Compounds. Journal of the American Chemical Society, 2004, 126, 466-467.	6.6	24
77	Direct chlorination of alcohols with chlorodimethylsilane catalyzed by a gallium trichloride/tartrate system under neutral conditions. Organic and Biomolecular Chemistry, 2008, 6, 2790.	1.5	24
78	Zn(ii) chloride-catalyzed direct coupling of various alkynes with acetals: facile and inexpensive access to functionalized propargyl ethers. Chemical Communications, 2013, 49, 11620.	2.2	24
79	Allylation of Carbonyl Compounds Bearing a Hydroxyl Group by Tetraallyltin:Â Highly Stereoselective Allylation in a Chelation-Controlled Manner. Journal of Organic Chemistry, 1998, 63, 6401-6404.	1.7	23
80	Radical Coupling of Iodocarbonyl Compounds with Butenylindium Generated by Transmetalation between Cyclopropylmethylstannane and Indium Halides. Organometallics, 2009, 28, 132-139.	1.1	23
81	Cyclopropylmethylation of Benzylic and Allylic Chlorides with Cyclopropylmethylstannane Catalyzed by Gallium or Indium Halide. Organic Letters, 2010, 12, 1520-1523.	2.4	23
82	Fine-Tuning of Boron Complexes with Cage-Shaped Ligand Geometry:  Rational Design of Triphenolic Ligand as a Template for Structure Control. Organic Letters, 2008, 10, 929-932.	2.4	22
83	A new type of allylation: synthesis of β,γ-unsaturated ketones from α-halogenated aryl ketones using an allyltributyltin(IV)–tin(II) dichloride–acetonitrile system. Chemical Communications, 1998, , 563-564.	2.2	20
84	Chelation-controlled diastereoselective construction of N-aryl-, N-acyl/tosylhydrazono β-substituted aspartate derivatives via Barbier-type reaction. Tetrahedron, 2013, 69, 6598-6611.	1.0	20
85	Indium Tribromide Catalyzed Coupling Reaction of Enol Ethers with Silyl Ketene Imines toward the Synthesis of β,γâ€Unsaturated Nitriles. Chemistry - A European Journal, 2015, 21, 18301-18308.	1.7	20
86	Indiumâ€Mediated Addition of γâ€Substituted Allylic Halides to <i>N</i> â€Aryl αâ€Imino Esters: Diastereoselective Production of β,βâ€2â€Disubstituted αâ€Amino Acid Derivatives with Two Contiguous Stereocenters. European Journal of Organic Chemistry, 2012, 2012, 4395-4411.	1.2	19
87	Diastereoselective Construction of 3â€Aminooxindoles with Adjacent Stereocenters: Stereocontrolled Addition of γâ€6ubstituted Allylindiums to Isatin Ketimines. European Journal of Organic Chemistry, 2015, 2015, 4168-4189.	1.2	19
88	Synthesis of Cage-Shaped Aluminum Aryloxides: Efficient Lewis Acid Catalyst for Stereoselective Glycosylation Driven by Flexible Shift of Four- to Five-Coordination. Journal of the American Chemical Society, 2019, 141, 17466-17471.	6.6	18
89	Indium Triiodide Catalyzed Direct Hydroallylation of Esters. European Journal of Organic Chemistry, 2010, 2010, 3382-3386.	1.2	17
90	Diastereoselective Reductive Aldol Reaction of Enones to Ketones Catalyzed by Halogenotin Hydride. Chemistry - A European Journal, 2010, 16, 13335-13338.	1.7	17

#	Article	IF	CITATIONS
91	InI3/Me3Sil-catalyzed Direct Alkylation of Enol Acetates Using Alkyl Acetates or Alkyl Ethers. Chemistry Letters, 2011, 40, 1223-1225.	0.7	17
92	Coupling Reaction of Enol Derivatives with Silyl Ketene Acetals Catalyzed by Gallium Trihalides. Chemistry - A European Journal, 2016, 22, 11837-11845.	1.7	17
93	Photoredox αâ€Allylation of αâ€Halocarbonyls with Allylboron Compounds Accelerated by Fluoride Salts under Visible Light Irradiation. Asian Journal of Organic Chemistry, 2016, 5, 179-182.	1.3	17
94	Carbometalation and Heterometalation of Carbonâ€Carbon Multipleâ€Bonds Using Groupâ€13 Heavy Metals: Carbogallation, Carboindation, Heterogallation, and Heteroindation. Chemistry - an Asian Journal, 2020, 15, 636-650.	1.7	17
95	Control of Both Syn and Anti Stereoselectivity in Michael Additions of Organotin Enolates. Journal of Organic Chemistry, 1998, 63, 1334-1336.	1.7	16
96	Reductive Cross-Aldol Reaction Using Bromoaldehyde and an Aldehyde Mediated by Germanium(II): One-Pot, Large-Scale Protocol. Organic Letters, 2005, 7, 1845-1848.	2.4	16
97	Germanium(II)â€Mediated Reductive Mannichâ€Type Reaction of αâ€Bromoketones to <i>N</i> â€Alkylimines. Angewandte Chemie - International Edition, 2008, 47, 6620-6623.	7.2	16
98	Highly stereoselective addition to alkoxy or hydroxy ketones using an α-stannyl ester–stannous chloride system in a chelation-controlled manner. Chemical Communications, 2001, , 157-158.	2.2	15
99	Synthesis and theoretical studies of gallium complexes back-shielded by a cage-shaped framework of tris(m-oxybenzyl)arene. Chemical Communications, 2010, 46, 4794.	2.2	15
100	Indium(III) Halide-Catalyzed UV-Irradiated Radical Coupling of Iodomethylphosphorus Compounds with Various Organostannanes. Organic Letters, 2013, 15, 1728-1731.	2.4	15
101	<i>C</i> ₃ ‣ymmetric Boron Lewis Acid with a Cage‣hape for Chiral Molecular Recognition and Asymmetric Catalysis. Chemistry - A European Journal, 2017, 23, 1273-1277.	1.7	15
102	Regio- and Stereoselective <i>Anti</i> -Carbozincation of Alkynyl Ethers Using ZnBr ₂ toward (<i>Z</i>)-β-Zincated Enol Ether Synthesis. Organic Letters, 2017, 19, 3927-3930.	2.4	15
103	Highly stereoselective synthesis of vicinal diols by stannous chloride-mediated addition of hydroxyallylic stannanes to aldehydes. Tetrahedron Letters, 2009, 50, 3209-3212.	0.7	14
104	Microwave-Assisted Synthesis of Monodisperse Nickel Nanoparticles Using a Complex of Nickel Formate with Long-Chain Amine Ligands. Bulletin of the Chemical Society of Japan, 2009, 82, 1044-1051.	2.0	14
105	Tuning Lewis Acidity by a Transannular p _{ï€} –ïƒ* Interaction between Boron and Silicon/Germanium Atoms Supported by a Cageâ€6haped Framework. Chemistry - A European Journal, 2017, 23, 5219-5223.	1.7	14
106	Synthesis of Cyclopropane ontaining Phosphorus Compounds by Radical Coupling of Butenylindium with Iodo Phosphorus Compounds. European Journal of Organic Chemistry, 2011, 2011, 2163-2171.	1.2	13
107	Synthesis of Alkylbismuths by Regiodivergent Carbobismuthination of Simple Alkenes. Chemistry - A European Journal, 2013, 19, 14411-14415.	1.7	13
108	Synthesis, characterization, and properties of a benzofuran-based cage-shaped borate: photo activation of Lewis acid catalysts. Chemical Communications, 2016, 52, 3348-3351.	2.2	13

#	Article	IF	CITATIONS
109	Organotin(IV) enamines as selective reagents: Coupling with \hat{I} ±-halocarbonyls for synthesis of substituted pyrroles. Tetrahedron Letters, 1997, 38, 3265-3266.	0.7	12
110	Stereoselective synthesis of vicinal diols by the stannous chloride-mediated reaction of unprotected hydroxyallylic stannane with carbonyl compounds. Tetrahedron, 2009, 65, 9569-9574.	1.0	12
111	Catalytic Cycloisomerization of Conjugated Bisbutatrienes into Pentalene Skeletons: Synthesis and Properties of Bisbutatrienes with an Acenaphthene Backbone. Chemistry Letters, 2020, 49, 589-592.	0.7	12
112	Regio- and stereoselective hydrostannation of allenes using dibutyliodotin hydride (Bu2SnIH) and successive coupling with aromatic halides. Chemical Communications, 2007, , 4913.	2.2	11
113	Generation of α″minyl Radicals from αâ€Bromo Cyclic <i>N</i> â€6ulfonylimines and Application to Coupling with Various Radical Acceptors Using a Photoredox Catalyst. Chemistry - A European Journal, 2018, 24, 312-316.	1.7	11
114	Regio- and Stereoselective Carboindation of Internal Alkynyl Ethers with Organosilicon or -stannane Nucleophiles. Journal of Organic Chemistry, 2019, 84, 13345-13363.	1.7	11
115	Indiumâ€Catalyzed Câ^'F Bond Transformation through Oxymetalation/βâ€Fluorine Elimination to Access Fluorinated Isocoumarins. Chemistry - A European Journal, 2021, 27, 8288-8294.	1.7	11
116	Chemoselective coupling of .alphabromo aldehydes with a tin enolate derived from the ring opening of diketene by bis(tributyltin) oxide. Journal of Organic Chemistry, 1994, 59, 486-487.	1.7	10
117	Remarkable Enhancement of Nucleophilicity of Tin Enolates toward Nitro- or Cyanoalkenes by Tetrabutylammonium Halides. Chemistry Letters, 2000, 29, 1266-1267.	0.7	10
118	Indium-Silicon Combined Lewis Acid Catalyst for Direct Allylation of Alcohols with Allyltrimethylsilane in Non-Halogenated Solvent. Synlett, 2005, 2005, 1737-1739.	1.0	10
119	Synthesis of oxazolidinones initiated by regio- and diastereo-controlled crotylation of α-dicarbonyl compounds. Organic and Biomolecular Chemistry, 2010, 8, 2009.	1.5	10
120	1,8â€Diphenylâ€9,10â€Bis(arylethynyl)phenanthrenes: Synthesis, Distorted Structure, and Optical Properties. Chemistry - A European Journal, 2018, 24, 6625-6631.	1.7	10
121	Indium Catalyzed Hydrofunctionalization of Styrene Derivatives Bearing a Hydroxy Group with Organosilicon Nucleophiles. Journal of Organic Chemistry, 2018, 83, 740-753.	1.7	10
122	<i>Anti</i> -Carboalumination of Alkynes Using Aluminum Trihalide and Silyl Ketene Imines: Stereo- and Regioselective Synthesis of Alkenylaluminum Compounds Bearing a Cyano Group. Organic Letters, 2018, 20, 3651-3655.	2.4	10
123	Characterization of Benzo[<i>a</i>]naphtho[2,3â€ <i>f</i>]pentalene: Interrelation between Openâ€shell and Antiaromatic Characters Governed by Mode of the Quinoidal Subunit and Molecular Symmetry. Chemistry - an Asian Journal, 2021, 16, 1553-1561.	1.7	10
124	<i>anti</i> ‣elective Borylstannylation of Alkynes with (<i>o</i> â€Phenylenediaminato)borylstannanes by a Radical Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
125	Highly stereoselective addition of tin enolate to α-chloro cyclic ketone derivatives catalyzed by Ph4SbBr. Tetrahedron Letters, 1994, 35, 8627-8630.	0.7	9
126	Catalytic Effect of Five-Coordinate Organotin Bromide or Tetraphenylstibonium Bromide on the Chemo- and Stereoselective Addition of Tin Enolate toα-Halo Ketone. Bulletin of the Chemical Society of Japan, 1995, 68, 1180-1186.	2.0	9

#	Article	IF	CITATIONS
127	GaBr3-catalyzed Coupling between α-Iodo Esters with Alkynylstannanes under UV Irradiation. Chemistry Letters, 2015, 44, 38-40.	0.7	9
128	Direct and Efficient Organic Synthesis Using Indium Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 99-108.	0.0	9
129	Substituted Butenylindium Generated by Transmetalation of Cyclopropylmethylstannane with Indium Iodide: Synthesis and Characterization of Monobutenylindium. Organometallics, 2011, 30, 2039-2043.	1.1	8
130	Lithium phenolates with a hexagonal-prismatic Li6O6 core isolated via a cage-shaped tripodal ligands system: crystal structures and their behavior in solution. Dalton Transactions, 2012, 41, 6602.	1.6	8
131	Stereocontrolled Synthesis of Triols Containing Four Asymmetric Centers: Application of <i>C</i> , <i>O</i> -Chelated Germyl Enolates to a Diastereoselective Aldol Reaction. Organic Letters, 2018, 20, 4148-4152.	2.4	8
132	Synthesis and Catalytic Activity of Atraneâ€ŧype Hard and Soft Lewis Superacids with a Silyl, Germyl, or Stannyl Cationic Center. Chemistry - an Asian Journal, 2021, 16, 3118-3123.	1.7	8
133	Revisiting Glycosylations Using Glycosyl Fluoride by BF ₃ ·Et ₂ O: Activation of Disarmed Glycosyl Fluorides with High Catalytic Turnover. Organic Letters, 2022, 24, 6-10.	2.4	8
134	Highly regioselective addition of an ester enolate equivalent to α,β-unsaturated ketones: selective formation of both isomers derived from 1,2- and 1,4-additions using α-stannyl ester with additives. Chemical Communications, 2000, , 2149-2150.	2.2	7
135	One-Pot Synthesis of Heterocycles Initiated by Chemoselective Reduction of Bifunctional Carbonyl Compounds. European Journal of Organic Chemistry, 2006, 2006, 1117-1120.	1.2	7
136	Germanium(II)-Mediated Reductive Cross-Aldol Reaction of Bromoaldehydes with Aldehydes: NMR Studies and ab Initio Calculations. Journal of Organic Chemistry, 2008, 73, 6312-6320.	1.7	7
137	Gallium Trihalide Catalyzed Sequential Addition of Two Different Carbon Nucleophiles to Esters by Using Silyl Cyanide and Ketene Silyl Acetals. Chemistry - A European Journal, 2014, 20, 11664-11668.	1.7	7
138	First Isolation and Characterization of the Highly Coordinated Groupâ€14 Enolates: Effects of the Coordination Controls on the Geometry and Tautomerization of Germyl Enolates. Chemistry - A European Journal, 2016, 22, 12688-12691.	1.7	7
139	Regio- and Stereoselective Allylindation of Alkynes Using InBr3 and Allylic Silanes: Synthesis, Characterization, and Application of 1,4-Dienylindiums toward Skipped Dienes. Molecules, 2018, 23, 1884.	1.7	7
140	Isolation and characterisation of a stable 2-azaphenalenyl azomethine ylide. Communications Chemistry, 2019, 2, .	2.0	7
141	Synthesis of (Z)â€Î²â€(Carbonylamino)alkenylindium through Regioselective anti â€Carboindation of Ynamides and Its Transformation to Multisubstituted Enamides. Chemistry - A European Journal, 2020, 26, 4930-4934.	1.7	7
142	One-pot synthesis of heterocyclic compounds initiated by chemoselective addition to β-acyl substituted unsaturated aldehydes with nucleophilic tin complexes. Journal of Organometallic Chemistry, 2007, 692, 604-619.	0.8	6
143	Syntheses of Aldol Products and Cyanohydrins from Carboxylic Acids Using Hydrosilanes, Organosilicon Reagents, and Indium Triiodide Catalyst. Chemistry Letters, 2013, 42, 1551-1553.	0.7	6
144	Chiral Transfer in the Reaction of Aminoallylic Stannanes with Carbonyls in Two Different Modes using Tin(II) and Indium(III) Halides for the Synthesis of Each Enantiomer. Organometallics, 2014, 33, 3924-3927.	1.1	6

#	Article	IF	CITATIONS
145	Synthesis and characterization of sterically crowded aryloxides: â€~Mitsubishi'-class of tetrametallic aluminum complexes. Polyhedron, 2017, 125, 130-134.	1.0	6
146	Synthesis of α-Alkenyl α,β-Unsaturated Ketones via Dehydrogermylation of Oxagermacycles with Regeneration of the Germanium(II) Species. Organic Letters, 2019, 21, 9818-9823.	2.4	6
147	Synthesis and Characterization of Pheox– and Phebox–Aluminum Complexes: Application as Tunable Lewis Acid Catalysts in Organic Reactions. Chemistry - A European Journal, 2019, 25, 10792-10796.	1.7	6
148	Synthesis and Characterization of Dinaphtho[2,1- <i>a</i> :2,3- <i>f</i>]pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer. Chemistry Letters, 2022, 51, 325-329.	0.7	6
149	Synthesis of Thioethers by InI3-Catalyzed Substitution of Siloxy Group Using Thiosilanes. Molecules, 2016, 21, 1330.	1.7	5
150	(o â€Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors. Chemistry - A European Journal, 2021, 27, 3968-3973.	1.7	5
151	Carboborationâ€Driven Generation of a Silylium Ion for Vinylic Câ^'F Bond Functionalization by B(C ₆ F ₅) ₃ Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	5
152	C(sp3)–F Bond Transformation of Perfluoroalkyl Compounds Mediated by Visible-Light Photocatalysis: Spin-Center Shifts and Radical/Polar Crossover Processes via Anionic Intermediates. Synthesis, 2022, 54, 2765-2777.	1.2	5
153	First <i>anti</i> â€6elective Direct Michael Addition of αâ€Alkoxy Ketones to Enones by Cooperative Catalysis of Samarium(III) Trifluoromethanesulfonate and Tributyltin Methoxide. European Journal of Organic Chemistry, 2017, 2017, 2831-2835.	1.2	4
154	Effect of Functional Groups in Organic Chlorides on Radical Reduction with Hydrostannane under Microwave Irradiation. Chemistry Letters, 2017, 46, 1116-1118.	0.7	4
155	Characterization of Highly Coordinated Allylgermanes: Pivotal Players for Enhanced Nucleophilicity and Stereoselectivity. Chemistry - an Asian Journal, 2020, 15, 1852-1857.	1.7	4
156	Development of Organic Transformations Based on the Controlled Lewis Acidity of Indium(III) Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1360-1373.	0.0	4
157	Lewis Acidâ€Catalyzed Diastereoselective Câ^'C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,βâ€Diarylâ€Î²â€haloesters. Angewandte Chemie - International Edition, 2022, 61, e202204462.	7.2	4
158	Geometrically Selective Synthesis of (<i>E</i>)-Enamides via Radical Allylation of Alkyl Halides with α-Aminoallylic Stannanes. Organic Letters, 2019, 21, 6589-6592.	2.4	3
159	Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a Ï€â€Pocket within Cageâ€Shaped Borates for Molecular Recognition. Chemistry - A European Journal, 2020, 26, 15023-15034.	1.7	3
160	Synthesis of β-cyanoalanine and enantiomerically enriched aspartate derivatives via the Zn- or In-mediated nucleophilic addition to α-imino esters. Tetrahedron, 2020, 76, 131217.	1.0	3
161	InBr ₃ â€Catalyzed Coupling Reaction between Electronâ€Deficient Alkenyl Ethers with Silyl Enolates for Stereoselective Synthesis of 1,5â€Dioxoâ€alkâ€2â€enes. European Journal of Organic Chemistry, 2021, 2021, 77-81.	1.2	3
162	Effect of noncovalent interactions in ion pairs on hypervalent iodines: inversion of regioselectivity in sulfonyloxylactonization. Organic Chemistry Frontiers, 2021, 8, 3695-3704.	2.3	3

#	Article	IF	CITATIONS
163	Homologation of Alkyl Acetates, Alkyl Ethers, Acetals, and Ketals by Formal Insertion of Diazo Compounds into a Carbon–Carbon Bond. Synthesis, 2021, 53, 4004-4019.	1.2	3
164	Novel Reaction System Using Highly Coordinated Organotin Enolates Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2001, 59, 697-706.	0.0	3
165	Indium-Catalyzed Formal Carbon–Halogen Bond Insertion: Synthesis of α-Halo-α,α-disubstituted Esters from Benzylic Halides and Diazo Esters. Organic Letters, 2022, 24, 1706-1710.	2.4	3
166	Synthetic Applications of Coordinated TIN Enolates and TIN Hydrides. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 150, 293-298.	0.8	2
167	Germanium(II)-Mediated Reductive Cross-Aldol Reaction of Aldehydes: Synthesis of Aldols with Diastereocontrolled Quaternary Carbon Centers. Synlett, 2007, 2007, 1720-1724.	1.0	2
168	Indium Implantation onto Zeolite by Pulse Arc Plasma Process for the Development of Novel Catalysts. Chemistry Letters, 2015, 44, 1292-1294.	0.7	2
169	Indium Implantation onto Zeolite by Pulse Arc Plasma Process for the Development of Novel Catalysts. Chemistry Letters, 2016, 45, 1333-1333.	0.7	2
170	Access to metastable [GeH2]n materials via a molecular "bottom-up―approach. Dalton Transactions, 2021, 50, 17688-17696.	1.6	2
171	Indium—Silicon Combined Lewis Acid Catalyst for Direct Allylation of Alcohols with Allyltrimethylsilane in Non-Halogenated Solvent ChemInform, 2005, 36, no.	0.1	1
172	Regiocontrolled Addition of Carbonyl Compounds with Allylic Indium Generated by Hydroindation of 1,3-Dienes. Synlett, 2008, 2008, 1407-1411.	1.0	1
173	Stabilization of Excited State Using Through-Space Interaction between Independent ï€-Systems Mediated by a <i>peri</i> -Substituted Hydroxy Group in 1-AryInaphthalenes: Unexpected Blue Emission of 1,3,5-Tris(<i>peri</i> -hydroxynaphthyl)benzene. Bulletin of the Chemical Society of Japan, 2011, 84, 1118-1129.	2.0	1
174	Indium Implantation onto Zeolite for Development of Novel Catalysts with a Ion Beam System. Journal of Smart Processing, 2015, 4, 228-233.	0.0	1
175	Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process. AIP Advances, 2017, 7, 065117.	0.6	1
176	Regio- and Stereo-controlled Addition Reaction of Aminoallylic Stannanes to Aldehydes Mediated by Germanium Dichloride. Chemistry Letters, 2018, 47, 821-824.	0.7	1
177	Synthesis and Characterization of π-Extended Nonalternant Hydrocarbons Containing Azulene, Pentalene, and Heptalene Frameworks. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 224-233.	0.0	1
178	Indium atalyzed Câ€F Bond Transformation through Oxymetalation/βâ€Fluorine Elimination to Access Fluorinated Isocoumarins. Chemistry - A European Journal, 2021, 27, 8232-8232.	1.7	1
179	Fine Tuning of Lewis Acidity by Cage-Shaped Ligand Structure toward Catalytic Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1294-1306.	0.0	1
180	<i>anti</i> -Carbometalation of Alkynyl Sulfides Using Indium Tribromide and Ketene Silyl Acetals. Chemistry Letters, 2020, 49, 1136-1139.	0.7	1

#	Article	IF	CITATIONS
181	Diastereoselective Addition of Î ³ -Substituted Allylic Nucleophiles to Ketones: Highly Stereoselective Synthesis of Tertiary Homoallylic Alcohols Using an Allylic Tributylstannane/Stannous Chloride System ChemInform, 2003, 34, no.	0.1	0
182	Remarkable Enhancement of Lewis Acidity of Chlorosilane by the Combined Use of Indium(III) Chloride ChemInform, 2003, 34, no.	0.1	0
183	Direct Conversion of Carbonyl Compounds into Organic Halides: Indium(III) Hydroxide-Catalyzed Deoxygenative Halogenation Using Chlorodimethylsilane ChemInform, 2003, 34, no.	0.1	0
184	Michael Addition of Stannyl Ketone Enolate to α,β-Unsaturated Esters Catalyzed by Tetrabutylammonium Bromide and an ab initio Theoretical Study of the Reaction Course ChemInform, 2003, 34, no.	0.1	0
185	Synthesis of 2-Monosubstituted Pyrroles by Intramolecular Addition of Amines via Reductive Amination with Dibutyliodotin Hydride Complex (Bu2SnIH-HMPA). Synlett, 2004, 2004, 137-139.	1.0	0
186	Catalytic Generation of Indium Hydride in a Highly Diastereoselective Reductive Aldol Reaction ChemInform, 2004, 35, no.	0.1	0
187	Direct Substitution of the Hydroxy Group in Alcohols with Silyl Nucleophiles Catalyzed by Indium Trichloride ChemInform, 2004, 35, no.	0.1	0
188	Allylic Tantalums as Highly Imine-Selective Reagents ChemInform, 2004, 35, no.	0.1	0
189	Indium-Catalyzed Direct Chlorination of Alcohols Using Chlorodimethylsilane—Benzil as a Selective and Mild System ChemInform, 2004, 35, no.	0.1	0
190	Reductive Cross-Aldol Reaction Using Bromoaldehyde and an Aldehyde Mediated by Germanium(II): One-Pot, Large-Scale Protocol ChemInform, 2005, 36, no.	0.1	0
191	Low Energy Indium or Gallium Ion Implantations to SiO ₂ Thin Films for Development of Novel Catalysts. E-Journal of Surface Science and Nanotechnology, 2014, 12, 197-202.	0.1	0
192	Deposition of Indium Nanoparticles on Powdered Material by Pulse Arc Plasma to Synthesize Catalysts for Friedel-Crafts Alkylation. E-Journal of Surface Science and Nanotechnology, 2018, 16, 105-110.	0.1	0
193	Reaction Field for a Lewis Acid with a Tunable Factor for Selective Organic Synthesis. , 2021, , 225-260.		0
194	Tuning of Lewis Acidity of Phebox-Al Complexes by Substituents on the Benzene Backbone and Unexpected Photocatalytic Activity for Hydrodebromination of Aryl Bromide. Chemistry Letters, 2021, 50, 538-541.	0.7	0
195	(o â€Phenylenediamino)borylstannanes: Efficient Reagents for Borylation of Various Alkyl Radical Precursors. Chemistry - A European Journal, 2021, 27, 3891-3891.	1.7	0
196	Synthesis of π-extended non-alternant hydrocarbons based on azulene (5-7), pentalene (5-5) and heptalene (7-7) skeletons and elucidation of their electronic structures. Advances in Physical Organic Chemistry, 2021, 55, 17-40.	0.5	0
197	<i>anti</i> â€Selective Borylstannylation of Alkynes with (<i>o</i> â€Phenylenediaminato)borylstannanes by a Radical Mechanism. Angewandte Chemie, 0, , .	1.6	0
198	Lewis Acidâ€Catalyzed Diastereoselective C–C Bond Insertion of Diazo Esters into Secondary Benzylic Halides for the Synthesis of α,βâ€Diarylâ€Î²â€haloesters. Angewandte Chemie, 0, , .	1.6	0