Kristoffer Hellstrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5562565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of ADAR-induced editing of minor viral RNA populations on replication and transmission of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
2	Rapid Cytokine Release Assays for Analysis of Severe Acute Respiratory Syndrome Coronavirus 2–Specific T Cells in Whole Blood. Journal of Infectious Diseases, 2022, 226, 208-216.	1.9	9
3	Impact of <i>CYBA</i> genotypes on severity and progression of multiple sclerosis. European Journal of Neurology, 2022, 29, 1457-1464.	1.7	2
4	Deficiency of SARS-CoV-2 T-cell responses after vaccination in long-term allo-HSCT survivors translates into abated humoral immunity. Blood Advances, 2022, 6, 2723-2730.	2.5	19
5	Reduced immunogenicity of a third COVID-19 vaccination among recipients of allogeneic hematopoietic stem cell transplantation. Haematologica, 2022, 107, 1479-1482.	1.7	15
6	Impaired SARS-CoV-2-specific T-cell reactivity in patients with cirrhosis following mRNA COVID-19 vaccination. JHEP Reports, 2022, 4, 100496.	2.6	14
7	Transient and durable T cell reactivity after COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
8	Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance. Oncolmmunology, 2021, 10, 1944538.	2.1	11
9	Presence of interferon-λ 4, male gender, absent/mild steatosis and low viral load augment antibody levels to hepatitis C virus. Scandinavian Journal of Gastroenterology, 2021, 56, 849-854.	0.6	1
10	Low Incidence of Reinfection With Endemic Coronaviruses Diagnosed by Real-Time PCR. Journal of Infectious Diseases, 2021, 223, 2013-2014.	1.9	9
11	Impact of NK Cell Activating Receptor Gene Variants on Receptor Expression and Outcome of Immunotherapy in Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 796072.	2.2	2
12	Immunotherapy with HDC/IL-2 may be clinically efficacious in acute myeloid leukemia of normal karyotype. Human Vaccines and Immunotherapeutics, 2020, 16, 109-111.	1.4	13
13	Complete remission after the first cycle of induction chemotherapy determines the clinical efficacy of relapseâ€preventive immunotherapy in acute myeloid leukaemia. British Journal of Haematology, 2020, 188, e49-e53.	1.2	4
14	Idelalisib Rescues Natural Killer Cells from Monocyte-Induced Immunosuppression by Inhibiting NOX2-Derived Reactive Oxygen Species. Cancer Immunology Research, 2020, 8, 1532-1541.	1.6	10
15	NOX2-Derived Reactive Oxygen Species in Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	25
16	Anthracycline-based consolidation may determine outcome of post-consolidation immunotherapy in AML. Leukemia and Lymphoma, 2019, 60, 2771-2778.	0.6	15
17	The HLA-B â^'21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood, 2019, 133, 1479-1488.	0.6	50
18	Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunology, Immunotherapy, 2019, 68, 163-174.	2.0	58

#	Article	IF	CITATIONS
19	NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene, 2019, 38, 1534-1543.	2.6	25
20	NOX2 in autoimmunity, tumor growth and metastasis. Journal of Pathology, 2019, 247, 151-154.	2.1	50
21	Role of NOX2 for leukaemic expansion in a murine model of <i>BCRâ€ABL1</i> ⁺ leukaemia. British Journal of Haematology, 2018, 182, 290-294.	1.2	11
22	Inosine Triphosphate Pyrophosphatase Dephosphorylates Ribavirin Triphosphate and Reduced Enzymatic Activity Potentiates Mutagenesis in Hepatitis C Virus. Journal of Virology, 2018, 92, .	1.5	18
23	Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2. Frontiers in Oncology, 2018, 8, 218.	1.3	25
24	Cytomegalovirus Serostatus Affects Autoreactive NK Cells and Outcomes of IL2-Based Immunotherapy in Acute Myeloid Leukemia. Cancer Immunology Research, 2018, 6, 1110-1119.	1.6	8
25	Dynamics of myeloid cell populations during relapse-preventive immunotherapy in acute myeloid leukemia. Journal of Leukocyte Biology, 2017, 102, 467-474.	1.5	17
26	Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 1473-1484.	2.0	45
27	Role of NOX2-Derived Reactive Oxygen Species in NK Cell–Mediated Control of Murine Melanoma Metastasis. Cancer Immunology Research, 2017, 5, 804-811.	1.6	86
28	Role of natural killer cell subsets and natural cytotoxicity receptors for the outcome of immunotherapy in acute myeloid leukemia. Oncolmmunology, 2016, 5, e1041701.	2.1	34
29	Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget, 2016, 7, 7586-7596.	0.8	13
30	Reactive oxygen species induced by therapeutic CD20 antibodies inhibit natural killer cell-mediated antibody-dependent cellular cytotoxicity against primary CLL cells. Oncotarget, 2016, 7, 32046-32053.	0.8	37
31	Histamine Promotes the Development of Monocyte-Derived Dendritic Cells and Reduces Tumor Growth by Targeting the Myeloid NADPH Oxidase. Journal of Immunology, 2015, 194, 5014-5021.	0.4	38
32	TLR-Stimulated Neutrophils Instruct NK Cells To Trigger Dendritic Cell Maturation and Promote Adaptive T Cell Responses. Journal of Immunology, 2015, 195, 1121-1128.	0.4	48
33	NK cell expression of natural cytotoxicity receptors may determine relapse risk in older AML patients undergoing immunotherapy for remission maintenance. Oncotarget, 2015, 6, 42569-42574.	0.8	35
34	Role of the ERK Pathway for Oxidant-Induced Parthanatos in Human Lymphocytes. PLoS ONE, 2014, 9, e89646.	1.1	31
35	Chronic myeloid leukemic cells trigger poly(ADP-ribose) polymerase-dependent inactivation and cell death in lymphocytes. Journal of Leukocyte Biology, 2013, 93, 155-160.	1.5	14
36	Immunotherapeutic strategies for relapse control in acute myeloid leukemia. Blood Reviews, 2013, 27, 209-216.	2.8	71

KRISTOFFER HELLSTRAND

#	Article	IF	CITATIONS
37	Impact of IL28B-Related Single Nucleotide Polymorphisms on Liver Histopathology in Chronic Hepatitis C Genotype 2 and 3. PLoS ONE, 2012, 7, e29370.	1.1	32
38	Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91phox expression and the PARP-1/PAR pathway of apoptosis. Blood, 2012, 119, 5832-5837.	0.6	75
39	Remission maintenance in acute myeloid leukemia: impact of functional histamine H2 receptors expressed by leukemic cells. Haematologica, 2012, 97, 1904-1908.	1.7	44
40	Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms. PLoS ONE, 2011, 6, e17232.	1.1	131
41	Immunotherapy with histamine dihydrochloride for the prevention of relapse in acute myeloid leukemia. Expert Review of Hematology, 2010, 3, 381-391.	1.0	44
42	Oxygen radical production in leukocytes and disease severity in multiple sclerosis. Journal of Neuroimmunology, 2009, 213, 131-134.	1.1	34
43	Randomized comparison of 12 or 24 weeks of peginterferon α-2a and ribavirin in chronic hepatitis C virus genotype 2/3 infection. Hepatology, 2008, 47, 1837-1845.	3.6	196
44	Cutting Edge: Antioxidative Properties of Myeloid Dendritic Cells: Protection of T Cells and NK Cells from Oxygen Radical-Induced Inactivation and Apoptosis. Journal of Immunology, 2007, 179, 21-25.	0.4	56
45	The CD16â ^{~^} /CD56bright Subset of NK Cells Is Resistant to Oxidant-Induced Cell Death. Journal of Immunology, 2007, 179, 781-785.	0.4	55
46	Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood, 2006, 108, 88-96.	0.6	226
47	NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: regulation by histamine and reactive oxygen species. British Journal of Haematology, 2006, 132, 91-98.	1.2	80
48	Oxygen Radicals Induce Poly(ADP-Ribose) Polymerase-Dependent Cell Death in Cytotoxic Lymphocytes. Journal of Immunology, 2006, 176, 7301-7307.	0.4	51
49	Addition of histamine to interleukin 2 treatment augments type 1 T-cell responses in patients with melanoma in vivo: immunologic results from a randomized clinical trial of interleukin 2 with or without histamine (MP 104). Clinical Cancer Research, 2005, 11, 290-7.	3.2	23
50	Activation of cytotoxic lymphocytes by interferon-α: role of oxygen radical-producing mononuclear phagocytes. Journal of Leukocyte Biology, 2004, 76, 1207-1213.	1.5	21
51	Immunotherapy with histamine and interleukin 2 in malignant melanoma with liver metastasis. Cancer Immunology, Immunotherapy, 2004, 53, 840-1.	2.0	14
52	Melanoma immunotherapy: a battle against radicals?. Trends in Immunology, 2003, 24, 232-233.	2.9	16
53	Results From a Randomized Phase III Study Comparing Combined Treatment With Histamine Dihydrochloride Plus Interleukin-2 Versus Interleukin-2 Alone in Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2002, 20, 125-133.	0.8	130
54	Histamine in cancer immunotherapy: A preclinical background. Seminars in Oncology, 2002, 29, 35-40.	0.8	58

#	Article	IF	CITATIONS
55	A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. Journal of Clinical Investigation, 2001, 108, 1221-1228.	3.9	102
56	Adjuvant histamine in cancer immunotherapy. Seminars in Cancer Biology, 2000, 10, 29-39.	4.3	16
57	Natural killer cell dysfunction and apoptosis induced by chronic myelogenous leukemia cells: role of reactive oxygen species and regulation by histamine. Blood, 2000, 96, 1961-1968.	0.6	148
58	Histamine: A Novel Approach to Cancer Immunotherapy. Cancer Investigation, 2000, 18, 347-355.	0.6	44
59	Histamine Protects T Cells and Natural Killer Cells Against Oxidative Stress. Journal of Interferon and Cytokine Research, 1999, 19, 1135-1144.	0.5	81
60	Histamine and Interleukin-2 in Acute Myelogenous Leukemia. Leukemia and Lymphoma, 1997, 27, 429-438.	0.6	33
61	Remission maintenance therapy with histamine and interleukinâ€⊋ in acute myelogenous leukaemia. British Journal of Haematology, 1996, 92, 620-626.	1.2	55
62	Histamine, cimetidine and colorectal cancer. Nature Medicine, 1996, 2, 364-364.	15.2	8
63	Histamine in immunotherapy of advanced melanoma: a pilot study. Cancer Immunology, Immunotherapy, 1994, 39, 416-419.	2.0	58
64	Histaminergic regulation of antibody-dependent cellular cytotoxicity of granulocytes, monocytes, and natural killer cells. Journal of Leukocyte Biology, 1994, 55, 392-397.	1.5	27
65	Regulation of the Natural Killer Cell Response to Interferon- $\hat{l}\pm$ by Biogenic Amines. Journal of Interferon Research, 1992, 12, 199-206.	1.2	24
66	Detection of Human Cytokine-Secreting Cells in Distinct Anatomical Compartments. Immunological Reviews, 1991, 119, 5-22.	2.8	45
67	Synergistic Activation of Human Natural Killer Cell Cytotoxicity by Histamine and Interleukin-2. International Archives of Allergy and Immunology, 1990, 92, 379-389.	0.9	41