
Xingguo Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The wheat <i>AGL6</i> â€like MADSâ€box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnology Journal, 2022, 20, 75-88.	4.1	38
2	The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 2022, 8, 110-117.	4.7	106
3	Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15, 504-519.	3.9	48
4	Functional analysis of TaPDI genes on storage protein accumulation by CRISPR/Cas9 edited wheat mutants. International Journal of Biological Macromolecules, 2022, 196, 131-143.	3.6	8
5	Overexpression of <i>TaSTT3bâ€2B</i> improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal, 2022, 20, 777-793.	4.1	18
6	Effects of TaMTL-Edited Mutations on Grain Phenotype and Storage Component Composition in Wheat. Agriculture (Switzerland), 2022, 12, 587.	1.4	3
7	Production of Conjoined Transgenic and Edited Barley and Wheat Plants for Nud Genes Using the CRISPR/SpCas9 System. Frontiers in Genetics, 2022, 13, .	1.1	6
8	Development of a wheat material with improved bread-making quality by overexpressing HMW-GS 1Sx2.3* from Aegilops longissima. Crop Journal, 2022, 10, 1717-1726.	2.3	6
9	Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nature Plants, 2022, 8, 930-939.	4.7	23
10	<i>TaVrt2</i> , an SVPâ€like gene, cooperates with <i>TaVrn1</i> to regulate vernalizationâ€induced flowering in wheat. New Phytologist, 2021, 231, 834-848.	3.5	46
11	Effects of 1Dy12 subunit silencing on seed storage protein accumulation and flour-processing quality in a common wheat somatic variation line. Food Chemistry, 2021, 335, 127663.	4.2	19
12	Fertility recovery of wheat male sterility controlled by <i>Ms2</i> using CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19, 224-226.	4.1	26
13	Genotypic and Phenotypic Characterization of Two Triticum aestivum L.—Dasypyrum villosum Translocations Lines in the Same Wheat Genetic Background. Agronomy, 2021, 11, 399.	1.3	4
14	Expression of Arabidopsis Ornithine Aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Reports, 2021, 40, 1155-1170.	2.8	15
15	Genome-Wide Identification and Expression Profiling Analysis of WOX Family Protein-Encoded Genes in Triticeae Species. International Journal of Molecular Sciences, 2021, 22, 9325.	1.8	10
16	TalAA21 represses TaARF25â€mediated expression of <i>TaERFs</i> required for grain size and weight development in wheat. Plant Journal, 2021, 108, 1754-1767.	2.8	28
17	Plasma membrane N-glycoproteome analysis of wheat seedling leaves under drought stress. International Journal of Biological Macromolecules, 2021, 193, 1541-1550.	3.6	8
18	Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	1.8	28

Xingguo Ye

#	Article	IF	CITATIONS
19	Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. Journal of Experimental Botany, 2020, 71, 1337-1349.	2.4	121
20	CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. Journal of Genetics and Genomics, 2020, 47, 563-575.	1.7	42
21	Screening and functional characterization of candidate resistance genes to powdery mildew from Dasypyrum villosum#4 in a wheat line Pm97033. Theoretical and Applied Genetics, 2020, 133, 3067-3083.	1.8	11
22	Folate content and retention in wheat grains and wheat-based foods: Effects of storage, processing, and cooking methods. Food Chemistry, 2020, 333, 127459.	4.2	22
23	Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biology, 2020, 20, 187.	1.6	11
24	Improvement of three commercial spring wheat varieties for powdery mildew resistance by marker-assisted selection. Crop Protection, 2019, 125, 104889.	1.0	10
25	Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines. BMC Genomics, 2019, 20, 289.	1.2	15
26	Folate content analysis of wheat cultivars developed in the North China Plain. Food Chemistry, 2019, 289, 377-383.	4.2	19
27	The soft glumes of common wheat are sterile-lemmas as determined by the domestication gene Q. Crop Journal, 2019, 7, 113-117.	2.3	13
28	Development and genetic analysis of wheat double substitution lines carrying Hordeum vulgare 2H and Thinopyrum intermedium 2Ai#2 chromosomes. Crop Journal, 2019, 7, 163-175.	2.3	3
29	Improved folate accumulation in genetically modified maize and wheat. Journal of Experimental Botany, 2019, 70, 1539-1551.	2.4	36
30	Overexpression of Maize ZmC1 and ZmR Transcription Factors in Wheat Regulates Anthocyanin Biosynthesis in a Tissue-Specific Manner. International Journal of Molecular Sciences, 2019, 20, 5806.	1.8	24
31	Pairing and Exchanging between Daypyrum villosum Chromosomes 6V#2 and 6V#4 in the Hybrids of Two Different Wheat Alien Substitution Lines. International Journal of Molecular Sciences, 2019, 20, 6063.	1.8	2
32	Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. Crop Journal, 2018, 6, 22-31.	2.3	29
33	Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theoretical and Applied Genetics, 2018, 131, 13-25.	1.8	24
34	Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. International Journal of Molecular Sciences, 2018, 19, 3681.	1.8	50
35	Effects of the wheat UDP-glucosyltransferase gene TaUGT-B2 on Agrobacterium-mediated plant transformation. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	3
36	Development and comparative genomic mapping of Dasypyrum villosum 6V#4S-specific PCR markers using transcriptome data. Theoretical and Applied Genetics, 2017, 130, 2057-2068.	1.8	24

XINGGUO YE

#	Article	IF	CITATIONS
37	Comprehensive molecular analysis of arginase-encoding genes in common wheat and its progenitor species. Scientific Reports, 2017, 7, 6641.	1.6	7
38	Generation of markerâ€free transgenic hexaploid wheat via an <i>Agrobacterium</i> â€mediated coâ€transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 2017, 15, 614-623.	4.1	132
39	Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition. PLoS ONE, 2016, 11, e0146933.	1.1	16
40	Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnology Journal, 2014, 12, 447-456.	4.1	30
41	The <scp>ERF</scp> transcription factor Ta <scp>ERF</scp> 3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, 12, 468-479.	4.1	246
42	Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional and Integrative Genomics, 2014, 14, 341-349.	1.4	87
43	Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens. PLoS ONE, 2013, 8, e79390.	1.1	29
44	Development, Identification, and Genetic Analysis of a Quantitative Dwarfing Somatic Variation Line in Wheat. Crop Science, 2013, 53, 1032-1041.	0.8	4
45	Genetic transformation of wheat: current status and future prospects. Plant Biotechnology Reports, 2012, 6, 183-193.	0.9	53
46	Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Functional and Integrative Genomics, 2011, 11, 23-35.	1.4	26
47	Obtaining marker-free transgenic soybean plants with optimal frequency by constructing a three T-DNA binary vector. Frontiers of Agriculture in China, 2008, 2, 156-161.	0.2	4
48	Development of wheat-Dasypyrum villosum T6V#4S·6AL translocation lines with enhanced inheritance for powdery mildew resistance. Theoretical and Applied Genetics, 0, , .	1.8	2