Hisae Tateishi-Karimata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes. Biochemistry, 1995, 34, 11211-11216.	1.2	660
2	Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Research, 1996, 24, 4501-4505.	6.5	453
3	Effects of Molecular Crowding on the Structures, Interactions, and Functions of Nucleic Acids. Chemical Reviews, 2014, 114, 2733-2758.	23.0	430
4	Hydration Regulates Thermodynamics of G-Quadruplex Formation under Molecular Crowding Conditions. Journal of the American Chemical Society, 2006, 128, 7957-7963.	6.6	301
5	Molecular crowding effects on structure and stability of DNA. Biochimie, 2008, 90, 1040-1051.	1.3	234
6	The Effect of Molecular Crowding with Nucleotide Length and Cosolute Structure on DNA Duplex Stability. Journal of the American Chemical Society, 2004, 126, 14330-14331.	6.6	209
7	Characterization of Structure and Stability of Long Telomeric DNA G-Quadruplexes. Journal of the American Chemical Society, 2006, 128, 15461-15468.	6.6	166
8	Free energy increments for hydrogen bonds in nucleic acid base pairs. Journal of the American Chemical Society, 1987, 109, 3783-3785.	6.6	158
9	Thermodynamicsâ^'Structure Relationship of Single Mismatches in RNA/DNA Duplexes. Biochemistry, 2000, 39, 11270-11281.	1.2	137
10	Stability of XGCGCp, GCGCYp, and XGCGCYp helixes: an empirical estimate of the energetics of hydrogen bonds in nucleic acids. Biochemistry, 1986, 25, 3214-3219.	1.2	134
11	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early‣tage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3967-3971.	7.8	130
12	Monomorphic RNA G-Quadruplex and Polymorphic DNA G-Quadruplex Structures Responding to Cellular Environmental Factors. Biochemistry, 2010, 49, 4554-4563.	1.2	130
13	Hydration of Watsonâ^'Crick Base Pairs and Dehydration of Hoogsteen Base Pairs Inducing Structural Polymorphism under Molecular Crowding Conditions. Journal of the American Chemical Society, 2009, 131, 3522-3531.	6.6	127
14	Suppression of Gene Expression by Gâ€Quadruplexes in Open Reading Frames Depends on Gâ€Quadruplex Stability. Angewandte Chemie - International Edition, 2013, 52, 5522-5526.	7.2	125
15	Sequence dependence for the energetics of dangling ends and terminal base pairs in ribonucleic acid. Biochemistry, 1987, 26, 4554-4558.	1.2	124
16	Structural Competition Involving G-Quadruplex DNA and Its Complementâ€. Biochemistry, 2003, 42, 11736-11744.	1.2	113
17	Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chemical Communications, 2012, 48, 6203.	2.2	106
18	Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Research, 2014, 42, 8831-8844.	6.5	104

#	Article	IF	CITATIONS
19	Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9605-9610.	3.3	104
20	Energetics of internal GU mismatches in ribooligonucleotide helixes. Biochemistry, 1986, 25, 5755-5759.	1.2	101
21	Beads-on-a-String Structure of Long Telomeric DNAs under Molecular Crowding Conditions. Journal of the American Chemical Society, 2012, 134, 20060-20069.	6.6	96
22	Multiple and Cooperative Binding of Fluorescence Light-up Probe Thioflavin T with Human Telomere DNA G-Quadruplex. Biochemistry, 2013, 52, 5620-5628.	1.2	96
23	Ultrasensitive and Selective Detection of a Prognostic Indicator in Early-Stage Cancer Using Graphene Oxide and Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 3966-3966.	7.8	94
24	A–T Base Pairs are More Stable Than G–C Base Pairs in a Hydrated Ionic Liquid. Angewandte Chemie - International Edition, 2012, 51, 1416-1419.	7.2	94
25	Effect of divalent cations on antiparallel G-quartet structure of d(G4 T4 G4). FEBS Letters, 2001, 496, 128-133.	1.3	91
26	Long RNA Dangling End Has Large Energetic Contribution to Duplex Stability. Journal of the American Chemical Society, 2002, 124, 10367-10372.	6.6	79
27	Destabilization of DNA G-Quadruplexes by Chemical Environment Changes during Tumor Progression Facilitates Transcription. Journal of the American Chemical Society, 2018, 140, 642-651.	6.6	79
28	Regulation of DNA nucleases by molecular crowding. Nucleic Acids Research, 2007, 35, 4086-4093.	6.5	75
29	The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophysical Reviews, 2016, 8, 11-23.	1.5	66
30	Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Research, 2013, 41, 6222-6231.	6.5	63
31	Choline Ion Interactions with DNA Atoms Explain Unique Stabilization of A–T Base Pairs in DNA Duplexes: A Microscopic View. Journal of Physical Chemistry B, 2014, 118, 379-389.	1.2	63
32	Engineering exosome polymer hybrids by atom transfer radical polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
33	Stabilization of Three-Way Junctions of DNA under Molecular Crowding Conditions. Journal of the American Chemical Society, 2009, 131, 9268-9280.	6.6	61
34	Chemical biology of non-canonical structures of nucleic acids for therapeutic applications. Chemical Communications, 2020, 56, 2379-2390.	2.2	59
35	Effects of metal ions and cosolutes on G-quadruplex topology. Journal of Inorganic Biochemistry, 2017, 166, 190-198.	1.5	57
36	Anionic phthalocyanines targeting G-quadruplexes and inhibiting telomerase activity in the presence of excessive DNA duplexes. Chemical Communications, 2010, 46, 5740.	2.2	56

#	Article	IF	CITATIONS
37	Nucleobaseâ€Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA Inâ€Vitro and in Cells. Angewandte Chemie - International Edition, 2016, 55, 899-903.	7.2	56
38	An anionic phthalocyanine decreases NRAS expression by breaking down its RNA G-quadruplex. Nature Communications, 2018, 9, 2271.	5.8	55
39	Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Research, 2017, 45, 461-469.	6.5	53
40	New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage. PLoS ONE, 2014, 9, e90580.	1.1	51
41	Recovery of the Formation and Function of Oxidized C-Quadruplexes by a Pyrene-Modified Guanine Tract. Journal of the American Chemical Society, 2018, 140, 5774-5783.	6.6	49
42	Hydration Changes upon DNA Folding Studied by Osmotic Stress Experiments. Biophysical Journal, 2012, 102, 2808-2817.	0.2	47
43	Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research, 2021, 49, 7839-7855.	6.5	47
44	Conformation and the sodium ion condensation on DNA and RNA structures in the presence of a neutral cosolute as a mimic of the intracellular media. Molecular BioSystems, 2008, 4, 579.	2.9	46
45	Effect of Pressure on Thermal Stability of G-Quadruplex DNA and Double-Stranded DNA Structures. Molecules, 2013, 18, 13297-13319.	1.7	46
46	Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations. Nucleic Acids Research, 2018, 46, 4301-4315.	6.5	44
47	Mirrorâ€Image Dependence: Targeting Enantiomeric Gâ€Quadruplex DNA Using Triplex Metallohelices. Angewandte Chemie - International Edition, 2018, 57, 15723-15727.	7.2	44
48	Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chemical Society Reviews, 2020, 49, 8439-8468.	18.7	44
49	Model studies of the effects of intracellular crowding on nucleic acid interactions. Molecular BioSystems, 2017, 13, 32-41.	2.9	43
50	Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nature Structural and Molecular Biology, 2018, 25, 279-288.	3.6	43
51	Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate. Scientific Reports, 2014, 4, 3593.	1.6	42
52	Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells. Scientific Reports, 2016, 6, 22719.	1.6	39
53	Nearest-neighbor parameters for predicting DNA duplex stability in diverse molecular crowding conditions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14194-14201.	3.3	37
54	Stabilization Factors Affecting Duplex Formation of Peptide Nucleic Acid with DNA. Biochemistry, 2001, 40, 8444-8451.	1.2	36

#	Article	IF	CITATIONS
55	i-Motifs are more stable than G-quadruplexes in a hydrated ionic liquid. Chemical Communications, 2015, 51, 6909-6912.	2.2	35
56	Real-Time Monitoring of G-Quadruplex Formation during Transcription. Analytical Chemistry, 2016, 88, 1984-1989.	3.2	34
57	Study on effects of molecular crowding on C-quadruplex-ligand binding and ligand-mediated telomerase inhibition. Methods, 2013, 64, 19-27.	1.9	33
58	Thrombin binding aptamer G-quadruplex stabilized by pyrene-modified nucleotides. Nucleic Acids Research, 2020, 48, 3975-3986.	6.5	32
59	tRNA Shifts the Gâ€quadruplex–Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angewandte Chemie - International Edition, 2016, 55, 14315-14319.	7.2	31
60	Chemical Modulation of DNA Replication along G-Quadruplex Based on Topology-Dependent Ligand Binding. Journal of the American Chemical Society, 2021, 143, 16458-16469.	6.6	31
61	Regulation of Telomerase Activity by the Thermodynamic Stability of a DNAâ‹RNA Hybrid. Angewandte Chemie - International Edition, 2008, 47, 9034-9038.	7.2	30
62	Noncanonical Structures and Their Thermodynamics of DNA and RNA Under Molecular Crowding. International Review of Cell and Molecular Biology, 2014, 307, 205-273.	1.6	30
63	Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie, 2016, 121, 204-208.	1.3	30
64	Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. Journal of the American Chemical Society, 2017, 139, 7768-7779.	6.6	30
65	Validation of the nearest-neighbor model for Watson–Crick self-complementary DNA duplexes in molecular crowding condition. Nucleic Acids Research, 2019, 47, 3284-3294.	6.5	30
66	Characterization of Intracellular Crowding Environments with Topology-Based DNA Quadruplex Sensors. Analytical Chemistry, 2019, 91, 2586-2590.	3.2	30
67	Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Research, 2020, 48, 12042-12054.	6.5	30
68	Effect of Molecular Crowding on the Stability of RNA G-Quadruplexes with Various Numbers of Quartets and Lengths of Loops. Biochemistry, 2020, 59, 2640-2649.	1.2	30
69	Watson–Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Accounts of Chemical Research, 2021, 54, 2110-2120.	7.6	30
70	Conformational Flexibility Influences Degree of Hydration of Nucleic Acid Hybrids. Journal of Physical Chemistry B, 2011, 115, 13862-13872.	1.2	29
71	Thermodynamic properties of water molecules in the presence of cosolute depend on DNA structure: a study using grid inhomogeneous solvation theory. Nucleic Acids Research, 2015, 43, gkv1133.	6.5	29
72	Conformational Dynamics of the RNA G-Quadruplex and its Effect on Translation Efficiency. Molecules, 2019, 24, 1613.	1.7	29

#	Article	IF	CITATIONS
73	Development of small peptides recognizing a monosaccharide by combinatorial chemistry. Chemical Communications, 2000, , 2295-2296.	2.2	28
74	Effects of Polyethylene Glycol on DNA Duplex Stability at Different NaCl Concentrations. Bulletin of the Chemical Society of Japan, 2007, 80, 1987-1994.	2.0	28
75	Ruthenium Polypyridyl Complex Bound to a Unimolecular Chair-Form G-Quadruplex. Journal of the American Chemical Society, 2022, 144, 5956-5964.	6.6	28
76	RNA/DNA hybrid duplexes with identical nearest-neighbor base-pairs have identical stability. FEBS Letters, 1994, 354, 74-78.	1.3	27
77	Sequence and Solvent Effects on Telomeric DNA Bimolecular G-Quadruplex Folding Kinetics. Journal of Physical Chemistry B, 2013, 117, 12391-12401.	1.2	27
78	Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds. FEBS Open Bio, 2014, 4, 643-650.	1.0	27
79	Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophysical Reviews, 2018, 10, 931-940.	1.5	26
80	Preferential targeting cancer-related i-motif DNAs by the plant flavonol fisetin for theranostics applications. Scientific Reports, 2020, 10, 2504.	1.6	25
81	Effects of trimethylamine <i>N</i> -oxide and urea on DNA duplex and G-quadruplex. Science and Technology of Advanced Materials, 2016, 17, 753-759.	2.8	24
82	Application of the Thermodynamic Parameters of DNA Stability Prediction to Double-Helix Formation of Deoxyribooligonucleotides. Nucleosides & Nucleotides, 1994, 13, 1311-1317.	0.5	23
83	Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH–Ĩ€ interactions. Nucleic Acids Research, 2017, 45, 7021-7030.	6.5	23
84	Thermodynamics-Hydration Relationships within Loops That Affect G-Quadruplexes under Molecular Crowding Conditions. Journal of Physical Chemistry B, 2013, 117, 963-972.	1.2	22
85	Structural foundation for DNA behavior in hydrated ionic liquid: An NMR study. Biochimie, 2015, 108, 169-177.	1.3	22
86	Quantitative Analyses of Nucleic Acid Stability Under the Molecular Crowding Condition Induced by Cosolutes. Current Protocols in Nucleic Acid Chemistry, 2013, 53, Unit7.19.	0.5	20
87	Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure. Biophysical Chemistry, 2017, 231, 146-154.	1.5	19
88	Affinity of Molecular Ions for DNA Structures Is Determined by Solvent-Accessible Surface Area. Journal of Physical Chemistry B, 2014, 118, 9583-9594.	1.2	18
89	Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure. Journal of Inorganic Biochemistry, 2017, 166, 199-207.	1.5	18
90	The Effects of Molecular Crowding on the Structure and Stability of G-Quadruplexes with an Abasic Site. Journal of Nucleic Acids, 2011, 2011, 1-9.	0.8	17

#	Article	IF	CITATIONS
91	A Turn-On Detection of DNA Sequences by Means of Fluorescence of DNA-Templated Silver Nanoclusters via Unique Interactions of a Hydrated Ionic Liquid. Molecules, 2018, 23, 2889.	1.7	16
92	RNA G-Quadruplexes Facilitate RNA Accumulation in G-Rich Repeat Expansions. Biochemistry, 2020, 59, 1972-1980.	1.2	16
93	Control of stability and structure of nucleic acids using cosolutes. Methods, 2014, 67, 151-158.	1.9	15
94	Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding. Physical Chemistry Chemical Physics, 2016, 18, 32002-32006.	1.3	15
95	New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Topics in Current Chemistry, 2021, 379, 17.	3.0	15
96	Real-time monitoring of DNA hybridization kinetics on living cell surfaces. Chemical Communications, 2013, 49, 8444.	2.2	14
97	Rational Design and Tuning of Functional RNA Switch to Control an Allosteric Intermolecular Interaction. Analytical Chemistry, 2015, 87, 7628-7635.	3.2	14
98	Thermal Stability of RNA Structures with Bulky Cations in Mixed Aqueous Solutions. Biophysical Journal, 2016, 111, 1350-1360.	0.2	13
99	Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. Chemical Record, 2017, 17, 817-832.	2.9	13
100	Triple-Helical Binding of Peptide Nucleic Acid Inhibits Maturation of Endogenous MicroRNA-197. ACS Chemical Biology, 2021, 16, 1147-1151.	1.6	13
101	Complexation of peptide with Cu2+ responsible to inducing and enhancing the formation of alpha-helix conformation. , 2000, 13, 349-359.		12
102	Local thermodynamics of the water molecules around single- and double-stranded DNA studied by grid inhomogeneous solvation theory. Chemical Physics Letters, 2016, 660, 250-255.	1.2	12
103	Alkylating probes for the G-quadruplex structure and evaluation of the properties of the alkylated G-quadruplex DNA. Organic and Biomolecular Chemistry, 2018, 16, 1436-1441.	1.5	12
104	Molecular crowding induces primer extension by RNA polymerase through base stacking beyond Watson–Crick rules. RSC Advances, 2020, 10, 33052-33058.	1.7	12
105	Sole and Stable RNA Duplexes of G-Rich Sequences Located in the 5′-Untranslated Region of Protooncogenes. Biochemistry, 2010, 49, 7190-7201.	1.2	11
106	DNA sensor's selectivity enhancement and protection from contaminating nucleases due to a hydrated ionic liquid. Analyst, The, 2015, 140, 4393-4398.	1.7	11
107	Specific Light-Up System for Protein and Metabolite Targets Triggered by Initiation Complex Formation. Scientific Reports, 2017, 7, 15191.	1.6	11
108	Bisubstrate Function of RNA Polymerases Triggered by Molecular Crowding Conditions. Biochemistry, 2019, 58, 1081-1093.	1.2	11

#	Article	IF	CITATIONS
109	Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity. Nucleic Acids Research, 2021, 49, 8449-8461.	6.5	11
110	The Stability of DNA and RNA G-Quartets. Nucleosides & Nucleotides, 1996, 15, 559-567.	0.5	10
111	Gâ€Quadruplexes with Tetra(ethylene glycol)â€Modified Deoxythymidines are Resistant to Nucleases and Inhibit HIVâ€1 Reverse Transcriptase. ChemBioChem, 2016, 17, 1399-1402.	1.3	10
112	A role of the Trp–His interaction in the conformational switch between α-helix and β-sheet in short alanine-based peptides. Perkin Transactions II RSC, 2000, , 2135-2140.	1.1	9
113	Methyl Substitution Regulates the Enantioselectivity of Supramolecular Complex Binding to Human Telomeric Gâ€Quadruplex DNA. Chemistry - A European Journal, 2014, 20, 16467-16472.	1.7	9
114	RNA apturing Microsphere Particles (R AMPs) for Optimization of Functional Aptamers. Small, 2019, 15, e1805062.	5.2	9
115	Drastic stability change of X-X mismatch in d(CXG) trinucleotide repeat disorders under molecular crowding condition. Biochemical and Biophysical Research Communications, 2018, 496, 601-607.	1.0	8
116	Effect of Potassium Concentration on Triplex Stability under Molecular Crowding Conditions. Molecules, 2020, 25, 387.	1.7	8
117	Relationship between catalytic activity and secondary structure of a hammerhead ribozyme: A study using thermodynamic parameters for RNA structure prediction. Supramolecular Chemistry, 1993, 2, 99-102.	1.5	7
118	Co-Transcriptional Molecular Assembly Results in a Kinetically Controlled Irreversible RNA Conformational Switch. Analytical Chemistry, 2018, 90, 11193-11197.	3.2	7
119	<i>In situ</i> condensation of an anti-cancer drug into fibrin gel enabling effective inhibition of tumor cell growth. Chemical Communications, 2019, 55, 11679-11682.	2.2	7
120	C-Rich Sequence in a Non-Template DNA Strand Regulates Structure Change of G-Quadruplex in a Template Strand during Transcription. Bulletin of the Chemical Society of Japan, 2019, 92, 572-577.	2.0	7
121	Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes. International Journal of Molecular Sciences, 2021, 22, 947.	1.8	7
122	Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence. RSC Advances, 2021, 11, 37205-37217.	1.7	7
123	Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription. Nucleic Acids Research, 2014, 42, 12949-12959.	6.5	6
124	Signaling Aptamer Optimization through Selection Using RNA-Capturing Microsphere Particles. Analytical Chemistry, 2020, 92, 7955-7963.	3.2	6
125	Expansion of the DNA Alphabet beyond Natural DNA Recognition. ChemBioChem, 2016, 17, 1301-1303.	1.3	5
126	Lighting Up of Thiazole Orange on G-Quadruplex DNA by High Pressure. ACS Omega, 2019, 4, 4325-4329.	1.6	5

#	Article	IF	CITATIONS
127	Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates. Molecules, 2020, 25, 4120.	1.7	5
128	New Modified Deoxythymine with Dibranched Tetraethylene Glycol Stabilizes G-Quadruplex Structures. Molecules, 2020, 25, 705.	1.7	5
129	DNA recognition of a 24-mer peptide derived from RecA protein. Biopolymers, 2000, 55, 416-424.	1.2	4
130	Dangling Ends Perturb the Stability of RNA Duplexes Responsive to Surrounding Conditions. ChemMedChem, 2014, 9, 2150-2155.	1.6	4
131	tRNA Shifts the Gâ€quadruplex–Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer. Angewandte Chemie, 2016, 128, 14527-14531.	1.6	4
132	Quantitative Analysis of Stall of Replicating DNA Polymerase by G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 257-274.	0.4	4
133	Effects of Modifying Thioflavin T at the N3-Position on Its G4 Binding and Fluorescence Emission. Molecules, 2020, 25, 4936.	1.7	4
134	Hydroxyl groups in cosolutes regulate the G-quadruplex topology of telomeric DNA. Biochemical and Biophysical Research Communications, 2020, 525, 177-183.	1.0	4
135	Dielectricity of a molecularly crowded solution accelerates NTP misincorporation during RNA-dependent RNA polymerization by T7 RNA polymerase. Scientific Reports, 2022, 12, 1149.	1.6	4
136	Intramolecular G-quadruplex-hairpin loop structure competition of a GC-rich exon region in the <i>TMPRSS2</i> gene. Chemical Communications, 2021, 58, 48-51.	2.2	4
137	Volumetric Strategy for Quantitatively Elucidating a Local Hydration Network around a G-Quadruplex. Analytical Chemistry, 2022, 94, 7400-7407.	3.2	4
138	Preparation of hydrogels for the study of the effects of spatial confinement on DNA. Transactions of the Materials Research Society of Japan, 2014, 39, 435-438.	0.2	3
139	Incorporation of O ⁶ -methylguanine restricts the conformational conversion of the human telomere G-quadruplex under molecular crowding conditions. Chemical Communications, 2016, 52, 1903-1906.	2.2	3
140	Quantitative Analysis of Nucleic Acid Stability with Ligands Under High Pressure to Design Novel Drugs Targeting Gâ€Quadruplexes. Current Protocols in Nucleic Acid Chemistry, 2017, 70, 17.9.1-17.9.17.	0.5	3
141	DNA structures under molecular crowding conditions with a phosphorylcholine derivative (MPC). Transactions of the Materials Research Society of Japan, 2015, 40, 99-102.	0.2	2
142	Design and Properties of Ligand-Conjugated Guanine Oligonucleotides for Recovery of Mutated G-Quadruplexes. Molecules, 2018, 23, 3228.	1.7	2
143	Development of Functional Nucleic Acids and Peptides by Combinatorial Chemistry and Downsizing Methods Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2000, 58, 1133-1143.	0.0	2
144	DNA Morphologic Changes Induced by Spermine on a Gold Surface under DNA Crowding Conditions. Chemistry Letters, 2011, 40, 855-857.	0.7	1

#	Article	IF	CITATIONS
145	Influences of Molecular Crowding on the Properties and Functions of Biomolecules. Seibutsu Butsuri, 2006, 46, 251-256.	0.0	1
146	Replication Control of Human Telomere G-Quadruplex DNA by G-Quadruplex Ligands Dependent on Solution Environment. Life, 2022, 12, 553.	1.1	1
147	Applicability of the nearest-neighbour model for pseudoknot RNAs. Chemical Communications, 2022, 58, 5952-5955.	2.2	1
148	Relationship between Structure and Function of Nucleic Acids: The Study Using Nearest Neighbor Parameters Seibutsu Butsuri, 1993, 33, 61-67.	0.0	0
149	Beyond the Watson-Crick double helix: design of functional nucleic acids in silico, in tube, and in cell. Nucleic Acids Symposium Series, 2003, 3, 211-212.	0.3	0
150	Novel biomaterials derived from deoxyribozyme and NAPzyme. Macromolecular Symposia, 2003, 201, 245-252.	0.4	0
151	Titelbild: Nucleobaseâ€Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA Inâ€Vitro and in Cells (Angew. Chem. 3/2016). Angewandte Chemie, 2016, 128, 833-833.	1.6	0
152	Innenrücktitelbild: tRNA Shifts the G-quadruplex-Hairpin Conformational Equilibrium in RNA towards the Hairpin Conformer (Angew. Chem. 46/2016). Angewandte Chemie, 2016, 128, 14685-14685.	1.6	0
153	Aptamer Optimization: RNA apturing Microsphere Particles (R AMPs) for Optimization of Functional Aptamers (Small 26/2019). Small, 2019, 15, 1970140.	5.2	0
154	Artificial turn-on riboswitch to control target gene expression using a wild-type riboswitch splicing mechanism. Journal of Bioscience and Bioengineering, 2021, 131, 115-123.	1.1	0