
William A Tisdale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hot-Electron Transfer from Semiconductor Nanocrystals. Science, 2010, 328, 1543-1547.	12.6	775
2	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
3	Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano, 2016, 10, 7830-7839.	14.6	466
4	Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. Journal of Physical Chemistry Letters, 2015, 6, 1911-1916.	4.6	358
5	Monodisperse, Air-Stable PbS Nanocrystals <i>via</i> Precursor Stoichiometry Control. ACS Nano, 2014, 8, 6363-6371.	14.6	315
6	Visualization of exciton transport in ordered and disordered molecular solids. Nature Communications, 2014, 5, 3646.	12.8	270
7	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	6.7	237
8	Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-rayÂscattering. Nature Materials, 2016, 15, 775-781.	27.5	216
9	Reduced Dielectric Screening and Enhanced Energy Transfer in Single- and Few-Layer MoS ₂ . Nano Letters, 2014, 14, 6087-6091.	9.1	178
10	Unconventional ferroelectricity in moir $ ilde{A}$ \mathbbm{C} heterostructures. Nature, 2020, 588, 71-76.	27.8	165
11	Coulomb Barrier for Charge Separation at an Organic Semiconductor Interface. Physical Review Letters, 2008, 101, 196403.	7.8	153
12	Subdiffusive Exciton Transport in Quantum Dot Solids. Nano Letters, 2014, 14, 3556-3562.	9.1	152
13	Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry, 2019, 1, 380-393.	8.5	146
14	Origin of Efficiency Roll-Off in Colloidal Quantum-Dot Light-Emitting Diodes. Physical Review Letters, 2013, 110, 217403.	7.8	144
15	CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters, 2017, 17, 3837-3843.	9.1	135
16	Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics, 2017, 4, 476-481.	6.6	124
17	Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nature Chemistry, 2020, 12, 672-682.	13.6	120
18	Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange. Chemistry of Materials, 2015, 27, 474-482.	6.7	111

#	Article	IF	CITATIONS
19	Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots. ACS Nano, 2009, 3, 1532-1538.	14.6	109
20	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	27.5	100
21	Artificial atoms on semiconductor surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 965-970.	7.1	96
22	Spatially Resolved Photogenerated Exciton and Charge Transport in Emerging Semiconductors. Annual Review of Physical Chemistry, 2020, 71, 1-30.	10.8	95
23	A Nanobionic Light-Emitting Plant. Nano Letters, 2017, 17, 7951-7961.	9.1	93
24	Impact of Size Dispersity, Ligand Coverage, and Ligand Length on the Structure of PbS Nanocrystal Superlattices. Chemistry of Materials, 2018, 30, 807-816.	6.7	93
25	Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides. Journal of the American Chemical Society, 2018, 140, 12354-12358.	13.7	85
26	Determination of Exciton Diffusion Length by Transient Photoluminescence Quenching and Its Application to Quantum Dot Films. Journal of Physical Chemistry C, 2015, 119, 9005-9015.	3.1	84
27	Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids. Nano Letters, 2017, 17, 893-901.	9.1	84
28	Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. Chemistry of Materials, 2019, 31, 5592-5607.	6.7	80
29	Highly efficient, dual state emission from an organic semiconductor. Applied Physics Letters, 2013, 103, ·	3.3	76
30	Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas. ACS Photonics, 2016, 3, 1741-1746.	6.6	70
31	Magnitude of the Förster Radius in Colloidal Quantum Dot Solids. Journal of Physical Chemistry C, 2014, 118, 13920-13928.	3.1	67
32	Two Origins of Broadband Emission in Multilayered 2D Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 8565-8572.	4.6	61
33	Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids. Matter, 2019, 1, 250-265.	10.0	56
34	Exciton trapping is responsible for the long apparent lifetime in acid-treated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2017, 96, .</mml:mn></mml:msub></mml:math 	:m a. 2 <td>າ່:າສຣub></td>	າ ່:າສຣ ub>
35	Toward Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: Systematic Photostability Investigation. Chemistry of Materials, 2019, 31, 2486-2496.	6.7	55
36	Size-Dependent Biexciton Spectrum in CsPbBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 2639-2645.	17.4	53

3

#	Article	IF	CITATIONS	
37	Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2020, 124, 12175-12184.	3.1	51	
38	Optimal Bandgap in a 2D Ruddlesden–Popper Perovskite Chalcogenide for Single-Junction Solar Cells. Chemistry of Materials, 2018, 30, 4882-4886.	6.7	49	
39	Tuning the Excitonic Properties of the 2D (PEA) ₂ (MA) _{<i>n</i>â~1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Perovskite Family via Quantum Confinement. Journal of Physical Chemistry Letters, 2021, 12, 1638-1643.	4.6	49	
40	Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (C <i>_x</i> H ₂ <i>_x</i> ₊₁ NH ₃) ₂ P (<i>x</i> = 4–9). Journal of Physical Chemistry C, 2019, 123, 27904-27916.	/i>H ₂ <i>_x</i> ₊₁ NH ₃) ₂ Pbl <s&ub>4</s&ub>		
41	Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022, 5, 28-36.	26.0	44	
42	Electron Dynamics at the ZnO (101ì0) Surface. Journal of Physical Chemistry C, 2008, 112, 14682-14692.	3.1	38	
43	Quantification of a PbClx Shell on the Surface of PbS Nanocrystals. , 2019, 1, 209-216.		35	
44	Inverse Temperature Dependence of Charge Carrier Hopping in Quantum Dot Solids. ACS Nano, 2018, 12, 7741-7749.	14.6	33	
45	Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation. Journal of Physical Chemistry Letters, 2018, 9, 4227-4232.	4.6	32	
46	Setting an Upper Bound to the Biexciton Binding Energy in CsPbBr3 Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 5680-5686.	4.6	29	
47	Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-Aggregate Critically Coupled Resonator. ACS Nano, 2012, 6, 467-471.	14.6	28	
48	Low-frequency Raman spectrum of 2D layered perovskites: Local atomistic motion or superlattice modes?. Journal of Chemical Physics, 2020, 153, 044710.	3.0	26	
49	Modulation of Low-Frequency Acoustic Vibrations in Semiconductor Nanocrystals through Choice of Surface Ligand. Journal of Physical Chemistry Letters, 2016, 7, 4213-4216.	4.6	24	
50	Melting Transitions of the Organic Subphase in Layered Two-Dimensional Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 2924-2930.	4.6	23	
51	The Importance of Unbound Ligand in Nanocrystal Superlattice Formation. Journal of the American Chemical Society, 2020, 142, 9675-9685.	13.7	23	
52	Transition from Thermodynamic to Kinetic-Limited Excitonic Energy Migration in Colloidal Quantum Dot Solids. Journal of Physical Chemistry C, 2014, 118, 7894-7900.	3.1	22	
53	Can Disorder Enhance Incoherent Exciton Diffusion?. Journal of Physical Chemistry B, 2015, 119, 9501-9509.	2.6	22	
54	Including surface ligand effects in continuum elastic models of nanocrystal vibrations. Journal of Chemical Physics, 2017, 147, 044711.	3.0	22	

#	Article	IF	CITATIONS
55	Characterization of colloidal nanocrystal surface structure using small angle neutron scattering and efficient Bayesian parameter estimation. Journal of Chemical Physics, 2019, 150, 244702.	3.0	22
56	Near-Infrared Photoluminescence and Thermal Stability of PbS Nanocrystals at Elevated Temperatures. Journal of Physical Chemistry C, 2016, 120, 20341-20349.	3.1	21
57	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	13.7	21
58	Size and Quality Enhancement of 2D Semiconducting Metal–Organic Chalcogenolates by Amine Addition. Journal of the American Chemical Society, 2021, 143, 20256-20263.	13.7	20
59	Quantification of Exciton Fine Structure Splitting in a Two-Dimensional Perovskite Compound. Journal of Physical Chemistry Letters, 2022, 13, 4463-4469.	4.6	20
60	Temperature-Independent Dielectric Constant in CsPbBr ₃ Nanocrystals Revealed by Linear Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 8088-8095.	4.6	19
61	Revealing the BrÃ,nsted-Evans-Polanyi relation in halide-activated fast MoS ₂ growth toward millimeter-sized 2D crystals. Science Advances, 2021, 7, eabj3274.	10.3	18
62	Temperature dependence of acoustic vibrations of CdSe and CdSe–CdS core–shell nanocrystals measured by low-frequency Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 28797-28801.	2.8	17
63	Power-Dependent Photoluminescence Efficiency in Manganese-Doped 2D Hybrid Perovskite Nanoplatelets. ACS Nano, 2021, 15, 20527-20538.	14.6	16
64	Enhancement of Second-Order Nonlinear-Optical Signals by Optical Stimulation. Physical Review Letters, 2015, 114, 183902.	7.8	15
65	Obtaining Structural Parameters from STEM–EDX Maps of Core/Shell Nanocrystals for Optoelectronics. ACS Applied Nano Materials, 2018, 1, 989-996.	5.0	15
66	Perspective: Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	15
67	Constructing Multifunctional Virus-Templated Nanoporous Composites for Thin Film Solar Cells: Contributions of Morphology and Optics to Photocurrent Generation. Journal of Physical Chemistry C, 2015, , 150610114441003.	3.1	14
68	Phase-Modulated Degenerate Parametric Amplification Microscopy. Nano Letters, 2018, 18, 5001-5006.	9.1	14
69	Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites. Chemical Science, 2021, 12, 6129-6135.	7.4	14
70	Morphological Control of 2D Hybrid Organic–Inorganic Semiconductor AgSePh. ACS Nano, 2022, 16, 2054-2065.	14.6	13
71	Spatially Resolved Energy Transfer in Patterned Colloidal Quantum Dot Heterostructures. ACS Applied Materials & Interfaces, 2014, 6, 3111-3114.	8.0	12
72	Markov Chain Monte Carlo Sampling for Target Analysis of Transient Absorption Spectra. Journal of Physical Chemistry A, 2019, 123, 3893-3902.	2.5	10

#	Article	IF	CITATIONS
73	Reversible Temperature-Induced Structural Transformations in PbS Nanocrystal Superlattices. Journal of Physical Chemistry C, 2020, 124, 13456-13466.	3.1	9
74	High repetition-rate femtosecond stimulated Raman spectroscopy with fast acquisition. Optics Express, 2018, 26, 18331.	3.4	8
75	A time-domain view of charge carriers in semiconductor nanocrystal solids. Chemical Science, 2020, 11, 5157-5167.	7.4	8
76	Resonance-Enhanced Excitation of Interlayer Vibrations in Atomically Thin Black Phosphorus. Nano Letters, 2021, 21, 4809-4815.	9.1	8
77	Repulsive, Densely Packed Ligand-Shells Mediate Interactions between PbS Nanocrystals in Solution. Journal of Physical Chemistry C, 2021, 125, 8014-8020.	3.1	4
78	Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation. Journal of Visualized Experiments, 2019, , .	0.3	3
79	Super-resolved second harmonic generation imaging by coherent image scanning microscopy. Applied Physics Letters, 2022, 120, .	3.3	3
80	Busting through quantum dot barriers. Nature Materials, 2022, 21, 497-499.	27.5	3
81	Goodman and Tisdale Reply:. Physical Review Letters, 2016, 116, 059402.	7.8	2
82	Optimal loading for injection. AICHE Journal, 2020, 66, e17102.	3.6	1
83	Surfaces of Infrared-Active PbS Nanocrystals and their Assemblies. , 0, , .		Ο