
## MarÃ-a Gutiérrez-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561549/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Final Results of Allogeneic Adipose Tissue–Derived Mesenchymal Stem Cells in Acute Ischemic Stroke<br>(AMASCIS): A Phase II, Randomized, Double-Blind, Placebo-Controlled, Single-Center, Pilot Clinical<br>Trial. Cell Transplantation, 2022, 31, 096368972210838. | 1.2 | 28        |
| 2  | Connectomic-genetic signatures in the cerebral small vessel disease. Neurobiology of Disease, 2022, 167, 105671.                                                                                                                                                    | 2.1 | 1         |
| 3  | Circulating Extracellular Vesicle Proteins and MicroRNA Profiles in Subcortical and<br>Cortical-Subcortical Ischaemic Stroke. Biomedicines, 2021, 9, 786.                                                                                                           | 1.4 | 18        |
| 4  | Allogeneic adipose tissue-derived mesenchymal stem cells in ischaemic stroke (AMASCIS-02): a phase IIb,<br>multicentre, double-blind, placebo-controlled clinical trial protocol. BMJ Open, 2021, 11, e051790.                                                      | 0.8 | 13        |
| 5  | Potential Roles of Extracellular Vesicles as Biomarkers and a Novel Treatment Approach in Multiple<br>Sclerosis. International Journal of Molecular Sciences, 2021, 22, 9011.                                                                                       | 1.8 | 16        |
| 6  | Similarities and Differences in Extracellular Vesicle Profiles between Ischaemic Stroke and Myocardial Infarction. Biomedicines, 2021, 9, 8.                                                                                                                        | 1.4 | 16        |
| 7  | The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke:<br>A Review. Biomedicines, 2021, 9, 1609.                                                                                                                      | 1.4 | 3         |
| 8  | Recovery After Stroke: New Insight to Promote Brain Plasticity. Frontiers in Neurology, 2021, 12, 768958.                                                                                                                                                           | 1.1 | 5         |
| 9  | B-Mode Ultrasound, a Reliable Tool for Monitoring Experimental Intracerebral Hemorrhage. Frontiers in Neurology, 2021, 12, 771402.                                                                                                                                  | 1.1 | 4         |
| 10 | Mesenchymal Stem Cells From Adipose Tissue Do not Improve Functional Recovery After Ischemic<br>Stroke in Hypertensive Rats. Stroke, 2020, 51, 342-346.                                                                                                             | 1.0 | 7         |
| 11 | Identification of brain structures and blood vessels by conventional ultrasound in rats. Journal of Neuroscience Methods, 2020, 346, 108935.                                                                                                                        | 1.3 | 10        |
| 12 | Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. Oncolmmunology, 2020, 9, 1773204.                                                                                                                                                  | 2.1 | 25        |
| 13 | Glycemic variability: prognostic impact on acute ischemic stroke and the impact of corrective<br>treatment for hyperglycemia. The GLIAS-III translational study. Journal of Translational Medicine, 2020,<br>18, 414.                                               | 1.8 | 9         |
| 14 | Sustained blood glutamate scavenging enhances protection in ischemic stroke. Communications<br>Biology, 2020, 3, 729.                                                                                                                                               | 2.0 | 13        |
| 15 | Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell<br>Research and Therapy, 2020, 11, 70.                                                                                                                         | 2.4 | 45        |
| 16 | Role of Exosomes as a Treatment and Potential Biomarker for Stroke. Translational Stroke Research, 2019, 10, 241-249.                                                                                                                                               | 2.3 | 82        |
| 17 | Intravenous delivery of adipose tissue-derived mesenchymal stem cells improves brain repair in hyperglycemic stroke rats. Stem Cell Research and Therapy, 2019, 10, 212.                                                                                            | 2.4 | 28        |
| 18 | Cell-Based Therapies for Stroke: Promising Solution or Dead End? Mesenchymal Stem Cells and Comorbidities in Preclinical Stroke Research. Frontiers in Neurology, 2019, 10, 332.                                                                                    | 1.1 | 18        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Why do we say â€~neuroprotection' in stroke when we mean â€~brain protection or cerebroprotection'?.<br>European Stroke Journal, 2019, 4, 281-282.                                                                                              | 2.7 | 2         |
| 20 | Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS ONE, 2018, 13, e0202590.                                                                           | 1.1 | 119       |
| 21 | White Matter Repair After Extracellular Vesicles Administration in an Experimental Animal Model of<br>Subcortical Stroke. Scientific Reports, 2017, 7, 44433.                                                                                   | 1.6 | 157       |
| 22 | NogoA Neutralization Promotes Axonal Restoration After White Matter Injury In Subcortical Stroke.<br>Scientific Reports, 2017, 7, 9431.                                                                                                         | 1.6 | 9         |
| 23 | Stem Cell Therapy and Administration Routes After Stroke. Translational Stroke Research, 2016, 7, 378-387.                                                                                                                                      | 2.3 | 78        |
| 24 | Enhanced brain-derived neurotrophic factor delivery by ultrasound and microbubbles promotes white matter repair after stroke. Biomaterials, 2016, 100, 41-52.                                                                                   | 5.7 | 33        |
| 25 | White matter injury restoration after stem cell administration in subcortical ischemic stroke. Stem Cell Research and Therapy, 2015, 6, 121.                                                                                                    | 2.4 | 52        |
| 26 | Intralesional Patterns of MRI ADC Maps Predict Outcome in Experimental Stroke. Cerebrovascular<br>Diseases, 2015, 39, 293-301.                                                                                                                  | 0.8 | 14        |
| 27 | Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. Journal of Translational Medicine, 2015, 13, 46.                                              | 1.8 | 67        |
| 28 | Different protective and reparative effects of olmesartan in stroke according to time of administration and withdrawal. Journal of Neuroscience Research, 2015, 93, 806-814.                                                                    | 1.3 | 7         |
| 29 | Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert<br>Opinion on Biological Therapy, 2015, 15, 873-881.                                                                                       | 1.4 | 49        |
| 30 | Blood Glutamate Grabbing Does Not Reduce the Hematoma in an Intracerebral Hemorrhage Model but<br>it is a Safe Excitotoxic Treatment Modality. Journal of Cerebral Blood Flow and Metabolism, 2015, 35,<br>1206-1212.                           | 2.4 | 26        |
| 31 | Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Injury, 2015, 29, 1497-1510.                                                    | 0.6 | 24        |
| 32 | Brain-Derived Neurotrophic Factor Administration Mediated Oligodendrocyte Differentiation and Myelin Formation in Subcortical Ischemic Stroke. Stroke, 2015, 46, 221-228.                                                                       | 1.0 | 132       |
| 33 | Reparative Therapy for Acute Ischemic Stroke with Allogeneic Mesenchymal Stem Cells from Adipose<br>Tissue: A Safety Assessment. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 2694-2700.                                           | 0.7 | 123       |
| 34 | Stem cells for brain repair and recovery after stroke. Expert Opinion on Biological Therapy, 2013, 13, 1479-1483.                                                                                                                               | 1.4 | 15        |
| 35 | Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Research and Therapy, 2013, 4, 11. | 2.4 | 201       |
| 36 | Adipose tissue-derived stem cells in stroke treatment: from bench to bedside. Discovery Medicine, 2013, 16, 37-43.                                                                                                                              | 0.5 | 39        |

| #  | Article                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | CDP-choline at high doses is as effective as i.v. thrombolysis in experimental animal stroke.<br>Neurological Research, 2012, 34, 649-656.             | 0.6 | 10        |
| 38 | CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke.<br>Neurochemistry International, 2012, 60, 310-317.   | 1.9 | 62        |
| 39 | Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. Journal of Cellular<br>and Molecular Medicine, 2012, 16, 2280-2290. | 1.6 | 43        |