
Athina Anastasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concurrent control over sequence and dispersity in multiblock copolymers. Nature Chemistry, 2022, 14, 304-312.	13.6	58
2	Transformerâ€Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angewandte Chemie - International Edition, 2022, 61, e202113424.	13.8	24
3	Transformerâ€Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angewandte Chemie, 2022, 134, .	2.0	7
4	A general model for the ideal chain length distributions of polymers made with reversible deactivation. Polymer Chemistry, 2022, 13, 898-913.	3.9	6
5	Reversing RAFT Polymerization: Near-Quantitative Monomer Generation Via a Catalyst-Free Depolymerization Approach. Journal of the American Chemical Society, 2022, 144, 4678-4684.	13.7	91
6	Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. European Polymer Journal, 2022, 174, 111326.	5.4	13
7	Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach. ACS Macro Letters, 2022, 11, 841-846.	4.8	25
8	Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. European Polymer Journal, 2022, 176, 111417.	5.4	9
9	Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of <i>giant amphiphiles</i> . Polymer Chemistry, 2021, 12, 2228-2235.	3.9	18
10	Controlling dispersity in aqueous atom transfer radical polymerization: rapid and quantitative synthesis of one-pot block copolymers. Chemical Science, 2021, 12, 14376-14382.	7.4	22
11	Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions. Macromolecules, 2021, 54, 3075-3083.	4.8	19
12	Understanding dispersity control in photo―atom transfer radical polymerization: Effect of degree of polymerization and kinetic evaluation. Journal of Polymer Science, 2021, 59, 2502.	3.8	11
13	Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angewandte Chemie, 2021, 133, 19532-19537.	2.0	6
14	Precise Control of Both Dispersity and Molecular Weight Distribution Shape by Polymer Blending. Angewandte Chemie - International Edition, 2021, 60, 19383-19388.	13.8	40
15	Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. Jacs Au, 2021, 1, 1975-1986.	7.9	16
16	Tailoring polymer dispersity by mixing ATRP initiators. Polymer Chemistry, 2021, 12, 5583-5588.	3.9	22
17	A comparison of RAFT and ATRP methods for controlled radical polymerization. Nature Reviews Chemistry, 2021, 5, 859-869.	30.2	153
18	Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS Polymers Au, 2021, 1, 187-195.	4.1	17

#	Article	IF	CITATIONS
19	Ubiquitous Nature of Rate Retardation in Reversible Addition–Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2021, 143, 17769-17777.	13.7	32
20	Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers. Polymer Chemistry, 2020, 11, 84-90.	3.9	31
21	Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. Journal of Colloid and Interface Science, 2020, 580, 850-862.	9.4	24
22	Tailoring polymer dispersity by mixing chain transfer agents in PET-RAFT polymerization. Polymer Chemistry, 2020, 11, 4968-4972.	3.9	60
23	Architecture Effects in Complex Spherical Assemblies of (AB) _{<i>n</i>} -Type Block Copolymers. ACS Macro Letters, 2020, 9, 1745-1752.	4.8	34
24	Tailoring Polymer Dispersity by RAFT Polymerization: A Versatile Approach. CheM, 2020, 6, 1340-1352.	11.7	125
25	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. Macromolecules, 2020, 53, 5280-5288.	4.8	47
26	Tailoring Polymer Dispersity in Photoinduced Iron-Catalyzed ATRP. ACS Macro Letters, 2020, 9, 459-463.	4.8	65
27	Protein-polymer bioconjugates via a versatile oxygen tolerant photoinduced controlled radical polymerization approach. Nature Communications, 2020, 11, 1486.	12.8	82
28	Recent Developments and Future Challenges in Controlled Radical Polymerization: A 2020ÂUpdate. CheM, 2020, 6, 1575-1588.	11.7	313
29	Norbornadienes: Robust and Scalable Building Blocks for Cascade "Click―Coupling of High Molecular Weight Polymers. Journal of the American Chemical Society, 2019, 141, 13619-13624.	13.7	36
30	Sequence-controlled Polymers via Controlled Radical Polymerization. Chimia, 2019, 73, 331-331.	0.6	0
31	Tuning Dispersity by Photoinduced Atom Transfer Radical Polymerisation: Monomodal Distributions with ppm Copper Concentration. Angewandte Chemie, 2019, 131, 13457-13462.	2.0	27
32	Tuning Dispersity by Photoinduced Atom Transfer Radical Polymerisation: Monomodal Distributions with ppm Copper Concentration. Angewandte Chemie - International Edition, 2019, 58, 13323-13328.	13.8	143
33	Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polymer Chemistry, 2019, 10, 4402-4406.	3.9	25
34	Effect of Polymerization Components on Oxygen-Tolerant Photo-ATRP. ACS Macro Letters, 2019, 8, 1546-1551.	4.8	72
35	Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chemical Science, 2019, 10, 8724-8734.	7.4	145
36	Ultra-low volume oxygen tolerant photoinduced Cu-RDRP. Polymer Chemistry, 2019, 10, 963-971.	3.9	60

#	Article	IF	CITATIONS
37	Stability of the A15 phase in diblock copolymer melts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13194-13199.	7.1	130
38	Lowâ€Temperature, Rapid Copolymerization of Acrylic Acid and Sodium Acrylate in Water. Journal of Polymer Science Part A, 2019, 57, 1414-1419.	2.3	3
39	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.3	81
40	Scalable synthesis of an architectural library of wellâ€defined poly(acrylic acid) derivatives: Role of structure on dispersant performance. Journal of Polymer Science Part A, 2019, 57, 716-725.	2.3	18
41	Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Letters, 2018, 7, 159-165.	4.8	38
42	Sequence-Controlled Methacrylic Multiblock Copolymers: Expanding the Scope of Sulfur-Free RAFT. Macromolecules, 2018, 51, 336-342.	4.8	57
43	Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polymer Chemistry, 2018, 9, 2382-2388.	3.9	43
44	Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules, 2018, 51, 7421-7434.	4.8	176
45	Macrocyclic Side-Chain Monomers for Photoinduced ATRP: Synthesis and Properties versus Long-Chain Linear Isomers. Macromolecules, 2018, 51, 6901-6910.	4.8	16
46	Copperâ€Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angewandte Chemie, 2018, 130, 9136-9140.	2.0	25
47	Kupfervermittelte radikalische Polymerisation mit reversibler Deaktivierung in wĤsrigen Medien. Angewandte Chemie, 2018, 130, 10628-10643.	2.0	16
48	Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polymer Chemistry, 2018, 9, 4395-4403.	3.9	18
49	Copperâ€Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angewandte Chemie - International Edition, 2018, 57, 10468-10482.	13.8	70
50	Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Letters, 2018, 7, 909-915.	4.8	28
51	Copperâ€Mediated Polymerization without External Deoxygenation or Oxygen Scavengers. Angewandte Chemie - International Edition, 2018, 57, 8998-9002.	13.8	91
52	Tuning of protease resistance in oligopeptides through <i>N</i> -alkylation. Chemical Communications, 2018, 54, 9631-9634.	4.1	13
53	Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polymer Chemistry, 2017, 8, 1353-1363.	3.9	62
54	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	4.1	41

#	Article	IF	CITATIONS
55	Direct access to functional (Meth)acrylate copolymers through transesterification with lithium alkoxides. Journal of Polymer Science Part A, 2017, 55, 1566-1574.	2.3	23
56	Light-Mediated Atom Transfer Radical Polymerization of Semi-Fluorinated (Meth)acrylates: Facile Access to Functional Materials. Journal of the American Chemical Society, 2017, 139, 5939-5945.	13.7	121
57	Controlled radical polymerization of vinyl ketones using visible light. Polymer Chemistry, 2017, 8, 3351-3356.	3.9	47
58	End group modification of poly(acrylates) obtained via ATRP: a user guide. Polymer Chemistry, 2017, 8, 689-697.	3.9	56
59	A di―tert â€butyl acrylate monomer for controlled radical photopolymerization. Journal of Polymer Science Part A, 2017, 55, 801-807.	2.3	7
60	Practical Chainâ€End Reduction of Polymers Obtained with ATRP. Macromolecular Chemistry and Physics, 2017, 218, 1700107.	2.2	13
61	Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane–Methyl Methacrylate Block Co-Oligomers. ACS Macro Letters, 2017, 6, 668-673.	4.8	78
62	Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation. Polymer Chemistry, 2017, 8, 1084-1094.	3.9	43
63	Universal Conditions for the Controlled Polymerization of Acrylates, Methacrylates, and Styrene via Cu(0)-RDRP. Journal of the American Chemical Society, 2017, 139, 1003-1010.	13.7	93
64	Oneâ€₽ot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semiâ€Fluorinated Segments. Angewandte Chemie - International Edition, 2017, 56, 14483-14487.	13.8	105
65	Oneâ€Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semiâ€Fluorinated Segments. Angewandte Chemie, 2017, 129, 14675-14679.	2.0	20
66	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	4.8	65
67	Desulfurization–bromination: direct chain-end modification of RAFT polymers. Polymer Chemistry, 2017, 8, 7188-7194.	3.9	16
68	Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization. Nature Chemistry, 2017, 9, 171-178.	13.6	287
69	Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Macromolecular Rapid Communications, 2016, 37, 356-361.	3.9	19
70	Aqueous Copper(II) Photoinduced Polymerization of Acrylates: Low Copper Concentration and the Importance of Sodium Halide Salts. Journal of the American Chemical Society, 2016, 138, 7346-7352.	13.7	95
71	Controlled aqueous polymerization of acrylamides and acrylates and "in situ―depolymerization in the presence of dissolved CO ₂ . Chemical Communications, 2016, 52, 6533-6536.	4.1	29
72	Well-Defined PDMAEA Stars via Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules, 2016, 49, 8914-8924.	4.8	39

#	Article	IF	CITATIONS
73	Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polymer Chemistry, 2016, 7, 430-440.	3.9	74
74	Dual Stimuli-Responsive Comb Polymers from Modular <i>N</i> -Acylated Poly(aminoester)-Based Macromonomers. ACS Macro Letters, 2016, 5, 321-325.	4.8	32
75	Facile access to thermoresponsive filomicelles with tuneable cores. Chemical Communications, 2016, 52, 4497-4500.	4.1	51
76	Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polymer Chemistry, 2016, 7, 2452-2456.	3.9	23
77	Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu(0)-Mediated Reversible-Deactivation Radical Polymerization. Macromolecules, 2016, 49, 483-489.	4.8	67
78	Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective. Polymer Chemistry, 2016, 7, 1002-1026.	3.9	119
79	Discrete copper(<scp>ii</scp>)-formate complexes as catalytic precursors for photo-induced reversible deactivation polymerization. Polymer Chemistry, 2016, 7, 191-197.	3.9	29
80	Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews, 2016, 116, 835-877.	47.7	373
81	Unprecedented Control over the Acrylate and Acrylamide Polymerization in Aqueous and Organic Media. ACS Symposium Series, 2015, , 29-45.	0.5	3
82	Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Advances, 2015, 5, 5879-5885.	3.6	18
83	Synthesis of well-defined α,ï‰-telechelic multiblock copolymers in aqueous medium: in situ generation of α,ï‰-diols. Polymer Chemistry, 2015, 6, 2226-2233.	3.9	54
84	Photo-induced living radical polymerization of acrylates utilizing a discrete copper(<scp>ii</scp>)–formate complex. Chemical Communications, 2015, 51, 5626-5629.	4.1	70
85	Photoinduced Synthesis of α,ï‰-Telechelic Sequence-Controlled Multiblock Copolymers. Macromolecules, 2015, 48, 1404-1411.	4.8	97
86	Synthesis of Well-Defined Poly(acrylates) in Ionic Liquids via Copper(II)-Mediated Photoinduced Living Radical Polymerization. Macromolecules, 2015, 48, 5140-5147.	4.8	56
87	The effect of ligand, solvent and Cu(0) source on the efficient polymerization of polyether acrylates and methacrylates in aqueous and organic media. Polymer Chemistry, 2015, 6, 5940-5950.	3.9	26
88	Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry. Journal of the American Chemical Society, 2015, 137, 6889-6896.	13.7	113
89	Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation. Journal of the American Chemical Society, 2015, 137, 4215-4222.	13.7	71
90	Copper(<scp>ii</scp>) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates. Polymer Chemistry, 2015, 6, 3581-3585.	3.9	56

#	Article	IF	CITATIONS
91	Novel comb polymers from alternating N-acylated poly(aminoester)s obtained by spontaneous zwitterionic copolymerisation. Chemical Communications, 2015, 51, 16213-16216.	4.1	25
92	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media. Macromolecules, 2015, 48, 5517-5525.	4.8	50
93	Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media. Macromolecules, 2015, 48, 6421-6432.	4.8	49
94	Synthesis and reactivity of α,ω-homotelechelic polymers by Cu(0)-mediated living radical polymerization. European Polymer Journal, 2015, 62, 294-303.	5.4	36
95	Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 °C. Polymer Chemistry, 2015, 6, 406-417.	3.9	137
96	Sequence-Controlled Multi-Block Glycopolymers via Cu(0) Mediated Living Radical Polymerization. ACS Symposium Series, 2014, , 327-348.	0.5	4
97	Copper-mediated living radical polymerization (SET-LRP) of lipophilic monomers from multi-functional initiators: reducing star–star coupling at high molecular weights and high monomer conversions. Polymer Chemistry, 2014, 5, 892-898.	3.9	52
98	Self-activation and activation of Cu(0) wire for SET-LRP mediated by fluorinated alcohols. Polymer Chemistry, 2014, 5, 89-95.	3.9	54
99	Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol–halogen, thiol–epoxy and CuAAC reactions. Polymer Chemistry, 2014, 5, 3876-3883.	3.9	101
100	<i>Absolut</i> "copper catalyzation perfectedâ€; robust living polymerization of NIPAM: <i>Guinness</i> is good for SET-LRP. Polymer Chemistry, 2014, 5, 57-61.	3.9	80
101	Copper(II)/Tertiary Amine Synergy in Photoinduced Living Radical Polymerization: Accelerated Synthesis of ω-Functional and I±,I‰-Heterofunctional Poly(acrylates). Journal of the American Chemical Society, 2014, 136, 1141-1149.	13.7	336
102	Expanding the Scope of the Photoinduced Living Radical Polymerization of Acrylates in the Presence of CuBr ₂ and Me ₆ -Tren. Macromolecules, 2014, 47, 3852-3859.	4.8	100
103	Aqueous Copperâ€Mediated Living Radical Polymerisation of <i>N</i> â€Acryloylmorpholine, SETâ€LRP in Water. Macromolecular Rapid Communications, 2014, 35, 965-970.	3.9	58
104	Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chemical Science, 2014, 5, 3536-3542.	7.4	151
105	Synthesis and Aggregation of Double Hydrophilic Diblock Glycopolymers via Aqueous SET-LRP. ACS Macro Letters, 2014, 3, 491-495.	4.8	64
106	Poly(acrylates) via SET-LRP in a continuous tubular reactor. Polymer Chemistry, 2013, 4, 4809.	3.9	60
107	SET-LRP of methacrylates in fluorinated alcohols. Polymer Chemistry, 2013, 4, 5563.	3.9	46
108	SET-LRP of hydrophobic and hydrophilic acrylates in tetrafluoropropanol. Polymer Chemistry, 2013, 4, 5555.	3.9	52

#	Article	IF	CITATION
109	Sequenceâ€Controlled Multiâ€Block Glycopolymers to Inhibit DCâ€SIGNâ€gp120 Binding. Angewandte Chemie - International Edition, 2013, 52, 4435-4439.	13.8	218
110	The importance of ligand reactions in Cu(0)-mediated living radical polymerisation of acrylates. Polymer Chemistry, 2013, 4, 2672.	3.9	68
111	Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me ₆ TREN. Journal of the American Chemical Society, 2013, 135, 7355-7363.	13.7	297
112	Polymerization of long chain [meth]acrylates by Cu(0)-mediated and catalytic chain transfer polymerisation (CCTP): high fidelity end group incorporation and modification. Polymer Chemistry, 2013, 4, 4113.	3.9	45
113	Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polymer Chemistry, 2013, 4, 106-112.	3.9	75
114	High Molecular Weight Block Copolymers by Sequential Monomer Addition via Cu(0)-Mediated Living Radical Polymerization (SET-LRP): An Optimized Approach. ACS Macro Letters, 2013, 2, 896-900.	4.8	124
115	Statistical copolymers of methyl methacrylate and 2â€methacryloyloxyethyl ferrocenecarboxylate: Monomer reactivity ratios, thermal and electrochemical properties. Journal of Polymer Science Part A 2011 49 3080-3089	2.3	17