Keith A Brewster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5561253/publications.pdf

Version: 2024-02-01

257450 3,090 41 24 citations h-index papers

39 g-index 43 43 43 1467 docs citations times ranked citing authors all docs

302126

#	Article	IF	CITATIONS
1	The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteorology and Atmospheric Physics, 2001, 76, 143-165.	2.0	513
2	The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorology and Atmospheric Physics, 2003, 82, 139-170.	2.0	356
3	Short-Wavelength Technology and the Potential For Distributed Networks of Small Radar Systems. Bulletin of the American Meteorological Society, 2009, 90, 1797-1818.	3.3	220
4	A Three-Dimensional Variational Data Analysis Method with Recursive Filter for Doppler Radars. Journal of Atmospheric and Oceanic Technology, 2004, 21, 457-469.	1.3	209
5	3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact. Monthly Weather Review, 2006, 134, 675-698.	1.4	205
6	An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bulletin of the American Meteorological Society, 2012, 93, 55-74.	3.3	194
7	Progress and challenges with Warn-on-Forecast. Atmospheric Research, 2013, 123, 2-16.	4.1	151
8	3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR. Monthly Weather Review, 2006, 134, 699-721.	1.4	143
9	Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble. Monthly Weather Review, 2011, 139, 1410-1418.	1.4	114
10	The Analysis and Prediction of the 8–9 May 2007 Oklahoma Tornadic Mesoscale Convective System by Assimilating WSR-88D and CASA Radar Data Using 3DVAR. Monthly Weather Review, 2011, 139, 224-246.	1.4	83
11	An Isentropic Three-Hourly Data Assimilation System Using ACARS Aircraft Observations. Monthly Weather Review, 1991, 119, 888-906.	1.4	76
12	Service-Oriented Environments for Dynamically Interacting with Mesoscale Weather. Computing in Science and Engineering, 2005, 7, 12-29.	1.2	75
13	Assessing Advances in the Assimilation of Radar Data and Other Mesoscale Observations within a Collaborative Forecasting–Research Environment. Weather and Forecasting, 2010, 25, 1510-1521.	1.4	74
14	Breaking New Ground in Severe Weather Prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Weather and Forecasting, 2017, 32, 1541-1568.	1.4	67
15	The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bulletin of the American Meteorological Society, 2018, 99, 1433-1448.	3.3	60
16	A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings. Weather and Forecasting, 2013, 28, 727-745.	1.4	56
17	Multiscale Characteristics and Evolution of Perturbations for Warm Season Convection-Allowing Precipitation Forecasts: Dependence on Background Flow and Method of Perturbation. Monthly Weather Review, 2014, 142, 1053-1073.	1.4	49
18	Impact of CASA Radar and Oklahoma Mesonet Data Assimilation on the Analysis and Prediction of Tornadic Mesovortices in an MCS. Monthly Weather Review, 2011, 139, 3422-3445.	1.4	45

#	Article	IF	Citations
19	Phase-Correcting Data Assimilation and Application to Storm-Scale Numerical Weather Prediction. Part I: Method Description and Simulation Testing. Monthly Weather Review, 2003, 131, 480-492.	1.4	45
20	Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain. Journal of Applied Meteorology and Climatology, 2003, 42, 129-140.	1.7	34
21	Near-Real-Time Applications of a Mesoscale Analysis System to Complex Terrain. Weather and Forecasting, 2002, 17, 971-1000.	1.4	32
22	Comparison of Eddy Dissipation Rates from Spatial Spectra of Doppler Velocities and Doppler Spectrum Widths. Journal of Atmospheric and Oceanic Technology, 1986, 3, 440-452.	1.3	31
23	Prediction of Convective Storms at Convection-Resolving 1 km Resolution over Continental United States with Radar Data Assimilation: An Example Case of 26 May 2008 and Precipitation Forecasts from Spring 2009. Advances in Meteorology, 2013, 2013, 1-9.	1.6	25
24	Systematic Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring Forecasting Experiment. Weather and Forecasting, 2019, 34, 1395-1416.	1.4	25
25	Variation of radio refractivity with respect to moisture and temperature and influence on radar ray path. Advances in Atmospheric Sciences, 2008, 25, 1098-1106.	4.3	23
26	Impacts of Beam Broadening and Earth Curvature on Storm-Scale 3D Variational Data Assimilation of Radial Velocity with Two Doppler Radars. Journal of Atmospheric and Oceanic Technology, 2010, 27, 617-636.	1.3	22
27	Phase-Correcting Data Assimilation and Application to Storm-Scale Numerical Weather Prediction. Part II: Application to a Severe Storm Outbreak. Monthly Weather Review, 2003, 131, 493-507.	1.4	22
28	Evaluation of Convection-Permitting Precipitation Forecast Products Using WRF, NMMB, and FV3 for the 2016–17 NOAA Hydrometeorology Testbed Flash Flood and Intense Rainfall Experiments. Weather and Forecasting, 2019, 34, 781-804.	1.4	17
29	Assessing Impacts of the High-Frequency Assimilation of Surface Observations for the Forecast of Convection Initiation on 3 April 2014 within the Dallas–Fort Worth Test Bed. Monthly Weather Review, 2018, 146, 3845-3872.	1.4	16
30	A comparison of the radar ray path equations and approximations for use in radar data assimilation. Advances in Atmospheric Sciences, 2006, 23, 190-198.	4.3	15
31	Sensitivities of 1-km Forecasts of 24 May 2011 Tornadic Supercells to Microphysics Parameterizations. Monthly Weather Review, 2017, 145, 2697-2721.	1.4	15
32	A Microphysics-Based Simulator for Advanced Airborne Weather Radar Development. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 1356-1373.	6.3	14
33	Assimilation of Indian radar data with ADAS and 3DVAR techniques for simulation of a small-scale tropical cyclone using ARPS model. Natural Hazards, 2011, 58, 15-29.	3.4	14
34	How Well Does an FV3â€Based Model Predict Precipitation at a Convectionâ€Allowing Resolution? Results From CAPS Forecasts for the 2018 NOAA Hazardous Weather Test Bed With Different Physics Combinations. Geophysical Research Letters, 2019, 46, 3523-3531.	4.0	10
35	Current and Future Uses of UAS for Improved Forecasts/Warnings and Scientific Studies. Bulletin of the American Meteorological Society, 2020, 101, E1322-E1328.	3.3	10
36	Impact of Radar Data Assimilation on the Numerical Simulation of a Severe Storm in Croatia. Meteorologische Zeitschrift, 2016, 25, 37-53.	1.0	7

#	Article	IF	CITATIONS
37	An evaluation of two automated quality control methods designed for use with hourly wind profiler data. Annales Geophysicae, 1994, 12, 711-724.	1.6	5
38	Coverage comparison of short range radar networks vs. conventional weather radars: Case study in the northwestern United States. , $2009, , .$		4
39	Comparison and Verification of Pointâ€Wise and Patchâ€Wise Localized Probabilityâ€Matched Mean Algorithms for Ensemble Consensus Precipitation Forecasts. Geophysical Research Letters, 2020, 47, e2020GL087839.	4.0	3
40	Photographs of a Funnel-Producing Indented Cloud-Base Swirl. Monthly Weather Review, 1986, 114, 1771-1774.	1.4	1
41	Multi-functional airborne external hazard monitoring radar with antenna diversity. , 2008, , .		1