Francisco Munoz-Arriola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5560694/publications.pdf

Version: 2024-02-01

623574 552653 35 927 14 26 citations g-index h-index papers 35 35 35 1539 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2015, 2, 150042.	2.4	277
2	Are climatic or land cover changes the dominant cause of runoff trends in the Upper Mississippi River Basin?. Geophysical Research Letters, 2013, 40, 1104-1110.	1.5	97
3	Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire, 2011, 20, 508.	1.0	65
4	Predictability of Evapotranspiration Patterns Using Remotely Sensed Vegetation Dynamics during the North American Monsoon. Journal of Hydrometeorology, 2012, 13, 103-121.	0.7	59
5	Long-Term Regional Estimates of Evapotranspiration for Mexico Based on Downscaled ISCCP Data. Journal of Hydrometeorology, 2010, 11, 253-275.	0.7	58
6	Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil. Agricultural Water Management, 2018, 196, 87-98.	2.4	44
7	Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content. Hydrology and Earth System Sciences, 2016, 20, 3859-3872.	1.9	38
8	Semi-seasonal groundwater forecast using multiple data-driven models in an irrigated cropland. Journal of Hydroinformatics, 2018, 20, 1227-1246.	1.1	37
9	A simple machine learning approach to model real-time streamflow using satellite inputs: Demonstration in a data scarce catchment. Journal of Hydrology, 2021, 595, 126046.	2.3	29
10	Sensitivity of the water resources of Rio Yaqui Basin, Mexico, to agriculture extensification under multiscale climate conditions. Water Resources Research, 2009, 45, .	1.7	27
11	A Spatially Enhanced Dataâ€Driven Multimodel to Improve Semiseasonal Groundwater Forecasts in the High Plains Aquifer, USA. Water Resources Research, 2019, 55, 5941-5961.	1.7	27
12	A Machine Learning Approach for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture. Remote Sensing, 2019, 11, 2221.	1.8	26
13	Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India. Geocarto International, 2022, 37, 1899-1918.	1.7	25
14	Sensitivity analysis of data-driven groundwater forecasts to hydroclimatic controls in irrigated croplands. Journal of Hydrology, 2020, 587, 124957.	2.3	16
15	Climate change implications for irrigation and groundwater in the Republican River Basin, USA. Climatic Change, 2018, 151, 303-316.	1.7	14
16	Spatial Heterogeneity of Temporal Shifts in Extreme Precipitation across India. Journal of Climate Change, 2019, 5, 19-31.	0.2	11
17	Variability of extreme precipitation in coastal river basins of the southern mexican Pacific region. Geofisica International, 2013, 52, 277-291.	0.2	10
18	A Framework for Tracing Social–Ecological Trajectories and Traps in Intensive Agricultural Landscapes. Sustainability, 2018, 10, 1646.	1.6	10

#	Article	IF	CITATIONS
19	Nutrient dynamics of the Brahmaputra (tropical river) during the monsoon period., 0, 76, 212-224.		7
20	Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping. PLoS ONE, 2021, 16, e0257001.	1.1	5
21	Climate and genetic data enhancement using deep learning analytics to improve maize yield predictability. Journal of Experimental Botany, 2022, 73, 5336-5354.	2.4	5
22	Improvements in Sub-Catchment Fractional Snowpack and Snowmelt Parameterizations and Hydrologic Modeling for Climate Change Assessments in the Western Himalayas. Hydrology, 2021, 8, 179.	1.3	5
23	Modeling Water Quantity and Quality Nonlinearities for Watershed Adaptability to Hydroclimate Extremes in Agricultural Landscapes. Hydrology, 2022, 9, 80.	1.3	5
24	Flood-Risk Analytics for Climate-Resilient Agriculture Using Remote Sensing in the Northern High Plains. , $2021, , .$		4
25	Trajectory Selection for Power-over-Tether Atmospheric Sensing UAS. , 2021, , .		4
26	Reply to comments on "Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil― Agricultural Water Management, 2018, 203, 272-276.	2.4	3
27	<i>Economic Analysis of Deficit Irrigation in Sugarcane Farming: Nchalo Estate, Chikwawa District, Malawi</i> ., 2019, , .		3
28	<i>Power-over-Tether UAS Leveraged for Nearly-Indefinite Meteorological Data Acquisition</i> ., 2020,,.		3
29	Common Pool Resource Management: Assessing Water Resources Planning for Hydrologically Connected Surface and Groundwater Systems. Hydrology, 2021, 8, 51.	1.3	3
30	Efforts to Build Infrastructure Resiliency to Future Hydroclimate Extremes., 2021,,.		3
31	<i>Analytics for climate-uncertainty estimation and propagation in maize-phenotype predictions</i> . , 2020, , .		2
32	Conceptual Framework to Integrate Economic Drivers of Decision Making for Technology Adoption in Agriculture. Engineering Proceedings, 2022, 9, .	0.4	2
33	Geospatial Synthesis of Biogeochemical Attributions of Porphyrins to Oil Pollution in Marine Sediments of the Gulf of MA©xico. Geosciences (Switzerland), 2022, 12, 77.	1.0	2
34	<i>Geospatial upscaling of atrazine's transport using electromagnetic induction across point to field scales</i> . , 2020, , .		1
35	Simplification of Complex Environmental Variations on Maize-Phenotype Predictability., 2020,,.		O