Albert K Khripunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5560631/publications.pdf

Version: 2024-02-01

42 437 11 20 papers citations h-index g-index

43 43 43 585
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or) Tj ETQq1 1 2010, 3, 102-111.	0.784314 1.5	rgBT /Overlo
2	Deep desalination of water by evaporation through polymeric membranes. Russian Journal of Applied Chemistry, 2007, 80, 790-798.	0.1	40
3	Light Scattering from Aqueous Solutions of Colloid Metal Nanoparticles Stabilized by Natural Polysaccharide Arabinogalactan. Journal of Physical Chemistry B, 2010, 114, 4204-4212.	1.2	30
4	Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synthetic Metals, 2015, 199, 147-151.	2.1	29
5	Structure of cellulose Acetobacter xylinum. Crystallography Reports, 2003, 48, 755-762.	0.1	27
6	High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: Synthesis, mechanical properties and perspectives for use as artificial cartilage. Polymer Science - Series A, 2013, 55, 302-312.	0.4	25
7	Cellulose-poly(acrylamide-acrylic acid) interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. II. Effect of ionic group contents and cellulose matrix modification. Journal of Applied Polymer Science, 2001, 80, 1452-1460.	1.3	19
8	Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synthetic Metals, 2015, 205, 201-205.	2.1	15
9	Investigation of nanocomposites based on hydrated calcium phosphates and cellulose Acetobacter xylinum. Glass Physics and Chemistry, 2008, 34, 192-200.	0.2	13
10	SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites. Scanning, 2016, 38, 757-765.	0.7	13
11	Composite hydrogels based on polyacrylamide and cellulose: Synthesis and functional properties. Russian Journal of Applied Chemistry, 2016, 89, 772-779.	0.1	11
12	Sorption Properties of Gel Films of Bacterial Cellulose. Russian Journal of Applied Chemistry, 2005, 78, 1176-1181.	0.1	10
13	Formation of a composite from SeO nanoparticles stabilized with polyvinylpyrrolidone and Acetobacter xylinum cellulose gel films. Russian Journal of Applied Chemistry, 2007, 80, 1549-1557.	0.1	9
14	Formation of organic-inorganic composite materials based on cellulose Acetobacter xylinum and calcium phosphates for medical applications. Glass Physics and Chemistry, 2010, 36, 484-493.	0.2	9
15	Network Model of Acetobacter Xylinum Cellulose Intercalated by Drug Nanoparticles. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 165-177.	0.2	8
16	Dielectric Properties and Dipole Glass Transition in Cellulose Acetobacter Xylinium. Ferroelectrics, 2003, 286, 141-151.	0.3	7
17	Interaction of SeO nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum. Crystallography Reports, 2006, 51, 619-626.	0.1	7
18	On possibility of power transformer operational reliability increase., 2016,,.		7

#	Article	IF	Citations
19	Light-emitting flexible transparent paper based on bacterial cellulose modified with semiconducting polymer MEH:PPV. Flexible and Printed Electronics, 2017, 2, 035004.	1.5	7
20	Model of packing of cellulose acetomyristinate in Langmuir-Blodgett films. Crystallography Reports, 2000, 45, 318-322.	0.1	6
21	Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 989-996.	0.1	6
22	Conformational and optical properties of macromolecules of some aliphatic-substituted cellulose esters. Cellulose, 2013, 20, 1057-1071.	2.4	6
23	Nanotextures of composites based on the interaction between hydroxyapatite and cellulose Gluconacetobacter xylinus. Glass Physics and Chemistry, 2014, 40, 367-374.	0.2	6
24	On the supramolecular organization of Langmuir–Blodgett cellulose acetovalerate films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 13-19.	2.3	5
25	Interaction between nanosized crystalline components of a composite based on Acetobacter xylinum cellulose and calcium phosphates. Polymer Science - Series A, 2010, 52, 419-429.	0.4	5
26	Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by 1H NMR cryoporometry and small-angle X-ray scattering. Crystallography Reports, 2010, 55, 312-317.	0.1	5
27	Composites based on Gluconacetobacter xylinus bacterial cellulose and calcium phosphates and their dielectric properties. Russian Journal of Applied Chemistry, 2013, 86, 1298-1304.	0.1	5
28	Formation of Langmuir-Blodgett films in solutions of comblike polymers. Crystallography Reports, 2005, 50, 614-624.	0.1	4
29	X-ray characterization of cellulose LB films. Physica B: Condensed Matter, 1994, 198, 138-139.	1.3	3
30	Hydrodynamic and conformational properties of cellulose myristate molecules in solution. Polymer Science - Series A, 2007, 49, 71-76.	0.4	3
31	Formation of a composite based on selenium nanoparticles stabilized with poly-N,N,N-trimethylmethacryloyloxyethylammonium methyl sulfate and on Acetobacter xylinum cellulose gel films. Russian Journal of Applied Chemistry, 2009, 82, 2006-2010.	0.1	3
32	Transport properties of cellulose ester membranes for separating gas and liquid mixtures. Russian Journal of Applied Chemistry, 2004, 77, 1877-1882.	0.1	2
33	Hydrodynamic and conformational properties of cellulose valerate molecules in dilute solution. Polymer Science - Series A, 2009, 51, 761-768.	0.4	2
34	Structure and Transport Properties of Films of Mixed Cellulose Esters. Russian Journal of Applied Chemistry, 2002, 75, 1700-1704.	0.1	1
35	Dependence of Separation Characteristics of Pervaporation on Parameters of Membranes Composed of Cellulose Myristinate and Polyphenylene Oxide. Russian Journal of Applied Chemistry, 2004, 77, 549-554.	0.1	1
36	Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer. Crystallography Reports, 2010, 55, 849-853.	0.1	1

3

#	Article	IF	Citations
37	Langmuir-Blodgett films of substituted cellulose acetomyristate: fabrication and X-ray diffraction study. Materials Science and Engineering C, 1995, 2, 225-227.	3.8	O
38	Comparison of electrochemical characteristics of acetylcellulose microfiltration membranes and a model system. Colloid Journal, 2009, 71, 706-711.	0.5	0
39	Conformational, optical, and electrooptical properties of cellulose pelargonates in solutions. Russian Journal of Applied Chemistry, 2011, 84, 156-163.	0.1	O
40	Phase transitions of native celluloses from evolutionarily different sources into polymorph IV. Russian Journal of Applied Chemistry, 2012, 85, 1923-1929.	0.1	0
41	Hydrodynamic, conformational, and optical properties of cellulose tridecanoate molecules in solutions. Russian Journal of Applied Chemistry, 2012, 85, 963-968.	0.1	O
42	Investigation of Electrical Insulating Properties of Bamboo Paper from Vietnam., 2022,,.		0