Raj R Makkar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5560613/raj-r-makkar-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 367 39,202 195 h-index g-index citations papers 6.69 465 7.8 49,251 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
367	Impact of inferior vena cava entry characteristics on tricuspid annular access during transcatheter interventions <i>Catheterization and Cardiovascular Interventions</i> , 2022 ,	2.7	2
366	Abnormal wire's trajectory during edge-to-edge mitral valve repair-a rare case report of inferior vena cava anomaly <i>European Heart Journal - Case Reports</i> , 2022 , 6, ytac060	0.9	
365	Reply: Considering All Indicators of Clinical Outcome in Patients Undergoing TAVR <i>JACC:</i> Cardiovascular Interventions, 2022 , 15, 566-567	5	
364	Transfemoral Tricuspid Valve Replacement in Patients With Tricuspid Regurgitation: TRISCEND Study 30-Day Results <i>JACC: Cardiovascular Interventions</i> , 2022 , 15, 471-480	5	1
363	Transcatheter Tricuspid Valve Replacement With the EVOQUE System: 1-Year Outcomes of a Multicenter, First-in-Human Experience <i>JACC: Cardiovascular Interventions</i> , 2022 , 15, 481-491	5	1
362	The PARTNER 3 Bicuspid Registry for Transcatheter Aortic Valve Replacement in Low-Surgical-Risk Patients <i>JACC: Cardiovascular Interventions</i> , 2022 , 15, 523-532	5	2
361	5-Year Follow-Up From the PARTNER 2 Aortic Valve-in-Valve Registry for Degenerated Aortic Surgical Bioprostheses <i>JACC: Cardiovascular Interventions</i> , 2022 , 15, 698-708	5	O
360	Prognostic Value of Increased Mitral Valve Gradient After Transcatheter Edge-to-Edge Repair for Primary Mitral Regurgitation <i>JACC: Cardiovascular Interventions</i> , 2022 , 15, 935-945	5	0
359	Duration of Dual Antiplatelet Therapy for Patients at High Bleeding Risk Undergoing PCI. <i>Journal of the American College of Cardiology</i> , 2021 , 78, 2060-2072	15.1	2
358	Impact of Pulmonary Artery Dilatation on Clinical Outcomes in Patients Undergoing Transcatheter Aortic Valve Replacement. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 2560-2569	5	2
357	Transcatheter Aortic Valve Replacement for Bicuspid Aortic Insufficiency After Valve-Sparing Aortic Root Replacement <i>JACC: Case Reports</i> , 2021 , 3, 1798-1802	1.2	O
356	Sodium-glucose cotransporter 2 inhibitors in patients with heart failure: a systematic review and meta-analysis of randomized trials. <i>European Heart Journal Quality of Care & Duical Outcomes</i> , 2021 ,	4.6	1
355	Impact of Annular Oversizing on Paravalvular Regurgitation and Valve[Hemodynamics: New Insights From PARTNER 3. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 2158-2169	5	3
354	Predictors of Left Ventricular Outflow Tract Obstruction After Transcatheter Mitral Valve Replacement in Severe Mitral Annular Calcification: An Analysis of the Transcatheter Mitral Valve Replacement in Mitral Annular Calcification Global Registry. <i>Circulation: Cardiovascular Interventions</i>	6	2
353	Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement. <i>European Heart Journal Cardiovascular Imaging</i> , 2021 , 22, 179-185	4.1	2
352	Atrial Fibrillation Is Associated With Mortality in Intermediate Surgical Risk Patients With Severe Aortic Stenosis: Analyses From the PARTNER 2A and PARTNER S3i Trials. <i>Journal of the American Heart Association</i> , 2021 , 10, e019584	6	3
351	Left-Sided Venous Access: A Technique to Simplify and Improve Success of Tricuspid Valve Clip Repair. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 581-582	5	3

(2021-2021)

350	Impact of renal function in high bleeding risk patients undergoing percutaneous coronary intervention: a patient-level stratified analysis from four post-approval studies. <i>Journal of Thrombosis and Thrombolysis</i> , 2021 , 52, 419-428	5.1	О
349	Temporal Trends, Characteristics, and Outcomes of Infective Endocarditis After Transcatheter Aortic Valve Replacement. <i>Clinical Infectious Diseases</i> , 2021 , 73, e3750-e3758	11.6	6
348	Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk. Journal of the American College of Cardiology, 2021 , 77, 1149-1161	15.1	47
347	Leaflet Thrombosis 2021 , 91-96		
346	Transcatheter Aortic Valve Implantation in Patients With Severe Aortic Stenosis Hospitalized With Acute Heart Failure. <i>American Journal of Cardiology</i> , 2021 , 144, 100-110	3	2
345	Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. <i>European Heart Journal</i> , 2021 , 42, 1825-1857	9.5	48
344	Valve-in-Surgical-Valve With SAPIEN 3 for Transcatheter Aortic Valve Replacement Based on Society of Thoracic Surgeons Predicted Risk of Mortality. <i>Circulation: Cardiovascular Interventions</i> , 2021 , 14, e010288	6	3
343	Left ventricular outflow tract area after percutaneous transseptal transcatheter mitral valve implantation: A three-dimensional transesophageal echocardiography study. <i>Echocardiography</i> , 2021 , 38, 932-942	1.5	
342	Percutaneous Edge-to-Edge Mitral Valve Repair With the MitraClip System Following Surgical Annuloplasty Ring Dehiscence. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 1267-1269	5	0
341	Impact of Percutaneous Edge-to-Edge Repair in Patients With Atrial Functional Mitral Regurgitation. <i>Circulation Journal</i> , 2021 , 85, 1001-1010	2.9	1
340	Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. <i>Journal of the American College of Cardiology</i> , 2021 , 77, 2717-2746	15.1	39
339	Cerebral Embolic Protection and Outcomes of Transcatheter Aortic Valve Replacement: Results From the Transcatheter Valve Therapy Registry. <i>Circulation</i> , 2021 , 143, 2229-2240	16.7	19
338	Feasibility of Coronary Access in Patients With Acute Coronary Syndrome and Previous TAVR. <i>JACC:</i> Cardiovascular Interventions, 2021 , 14, 1578-1590	5	5
337	2-Year Outcomes for Transcatheter Repair in Patients With Mitral Regurgitation From the CLASP Study. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 1538-1548	5	6
336	Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. <i>Open Heart</i> , 2021 , 8,	3	5
335	Optimal Medical Therapy Following Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2021 , 141, 62-71	3	O
334	Single versus dual antiplatelet therapy after transcatheter aortic valve replacement: a meta-analysis of randomized clinical trials. <i>Cardiovascular Revascularization Medicine</i> , 2021 , 34, 46-46	1.6	О
333	Editorial on the 2021 ISMICS Expert Consensus Statement on TAVR/SAVR. <i>Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery</i> , 2021 , 16, 24-25	1.5	

332	Utilization, Costs, and Outcomes of Conscious Sedation Versus General Anesthesia for Transcatheter Aortic Valve Replacement. <i>Circulation: Cardiovascular Interventions</i> , 2021 , 14, e010310	6	1
331	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. <i>European Journal of Cardio-thoracic Surgery</i> , 2021 , 60, 448-476	3	5
330	Usefulness of Computed Tomography to Predict Mitral Stenosis After Transcatheter Mitral Valve Edge-to-Edge Repair. <i>American Journal of Cardiology</i> , 2021 , 153, 109-118	3	1
329	Native Aortic Valve Disease Progression and Bioprosthetic Valve Degeneration in Patients With Transcatheter Aortic Valve Implantation. <i>Circulation</i> , 2021 , 144, 1396-1408	16.7	9
328	International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes. <i>Annals of Thoracic Surgery</i> , 2021 , 112, e203-e235	2.7	3
327	International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2021 , 162, e383-e414	1.5	9
326	Real-World Experience With the SAPIEN 3 Ultra Transcatheter Heart Valve: A Propensity-Matched Analysis From the United States. <i>Circulation: Cardiovascular Interventions</i> , 2021 , 14, e010543	6	2
325	3- or 1-Month DAPT in Patients at High Bleeding Risk Undergoing Everolimus-Eluting Stent Implantation. <i>JACC: Cardiovascular Interventions</i> , 2021 , 14, 1870-1883	5	14
324	Percutaneous closure of left ventricular pseudoaneurysm using simultaneous transseptal and transapical approach: a case report. <i>European Heart Journal - Case Reports</i> , 2021 , 5, ytab311	0.9	
323	Association Between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke Among Patients at Low Surgical Risk. <i>JAMA - Journal of the American Medical Association</i> , 2021 , 326, 1034-1044	27.4	6
322	Impact of the Geriatric Nutritional Risk Index in Patients Undergoing Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2021 , 157, 71-78	3	2
321	Minimally Invasive versus Full Sternotomy for Isolated Aortic Valve Replacement in Low-risk Patients <i>Annals of Thoracic Surgery</i> , 2021 ,	2.7	1
320	Diastolic Function and Clinical Outcomes After Transcatheter Aortic Valve Replacement: PARTNER 2 SAPIEN 3 Registry. <i>Journal of the American College of Cardiology</i> , 2020 , 76, 2940-2951	15.1	5
319	Risk of Coronary Obstruction Due to Sinus Sequestration in Redo Transcatheter Aortic Valve Replacement. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 2617-2627	5	14
318	Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. <i>Basic Research in Cardiology</i> , 2020 , 115, 36	11.8	33
317	Subclinical Leaflet Thrombosis in Transcatheter and Surgical Bioprosthetic Valves: PARTNER 3 Cardiac Computed Tomography Substudy. <i>Journal of the American College of Cardiology</i> , 2020 , 75, 3003	-3075	62
316	Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): a randomised, controlled, non-inferiority trial. <i>Lancet, The</i> , 2020 , 396, 669-683	40	30
315	Transcatheter aortic valve replacement in bicuspid aortic valve stenosis. <i>Progress in Cardiovascular Diseases</i> , 2020 , 63, 482-487	8.5	3

(2020-2020)

314	Mitral Regurgitation in Low-Flow, Low-Gradient Aortic Stenosis Patients[Undergoing TAVR: Insights From the TOPAS-TAVI Registry. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 567-579	5	5
313	Timing and Outcomes of Percutaneous Coronary Intervention in Patients Who Underwent Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2020 , 125, 1361-1368	3	8
312	Coronary Protection to Prevent Coronary Obstruction During TAVR: A Multicenter International Registry. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 739-747	5	34
311	Use of a Dual-Filter Cerebral Embolic Protection Device in Thoracic Endovascular Aortic Repair. Annals of Vascular Surgery, 2020 , 65, 54.e1-54.e4	1.7	5
310	Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. <i>New England Journal of Medicine</i> , 2020 , 382, 799-809	59.2	239
309	Long-Term Safety and Efficacy of Durable Polymer Cobalt-Chromium Everolimus-Eluting Stents in Patients at High Bleeding Risk: A Patient-Level Stratified Analysis From Four Postapproval Studies. <i>Circulation</i> , 2020 , 141, 891-901	16.7	16
308	Coronary Access After TAVR. JACC: Cardiovascular Interventions, 2020, 13, 693-705	5	44
307	Chimney Stenting for Coronary Occlusion During TAVR: Insights From the Chimney Registry. <i>JACC:</i> Cardiovascular Interventions, 2020 , 13, 751-761	5	33
306	Sex-Related Differences in Patients at High Bleeding Risk Undergoing Percutaneous Coronary Intervention: A Patient-Level Pooled Analysis From 4 Postapproval Studies. <i>Journal of the American Heart Association</i> , 2020 , 9, e014611	6	5
305	New-Generation Transcatheter Aortic Valves in Patients With Small Aortic Annuli - Comparison of Balloon- and Self-Expandable Valves in Asian Patients. <i>Circulation Journal</i> , 2020 , 84, 2015-2022	2.9	2
304	Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: the Dilated cardiomYopathy iNtervention with Allogeneic Myocardially-regenerative Cells (DYNAMIC) trial. <i>EuroIntervention</i> , 2020 , 16, e293-e300	3.1	22
303	Porcelain Ascending Aorta 2020 , 579-586		
302	A Controlled Trial of Rivaroxaban after Transcatheter Aortic-Valve Replacement. <i>New England Journal of Medicine</i> , 2020 , 382, 120-129	59.2	185
301	Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement. <i>New England Journal of Medicine</i> , 2020 , 382, 130-139	59.2	93
300	Mid-Term Outcomes of Transcatheter Aortic Valve Replacement in Extremely Large Annuli With Edwards SAPIEN 3 Valve. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 210-216	5	7
299	Structural Deterioration of Transcatheter Versus Surgical Aortic Valve Bioprostheses in the PARTNER-2 Trial. <i>Journal of the American College of Cardiology</i> , 2020 , 76, 1830-1843	15.1	40
298	Transcatheter Edge-to-Edge Mitral Valve Repair With the MitraClip G4 System. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 2402-2414	5	23
297	1-Year Outcomes for Transcatheter Repair in Patients With Mitral Regurgitation From the CLASP Study. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 2344-2357	5	24

296	Anticoagulation Therapy After Transcatheter Aortic Valve Replacement. <i>Current Cardiology Reports</i> , 2020 , 22, 175	4.2	4
295	Valve-in-Valve for Degenerated Transcatheter Aortic Valve Replacement Versus Valve-in-Valve for Degenerated Surgical Aortic Bioprostheses: A 3-Center Comparison of Hemodynamic and 1-Year Outcome. <i>Journal of the American Heart Association</i> , 2020 , 9, e013973	6	10
294	Outcome of Flow-Gradient Patterns of Aortic Stenosis After Aortic Valve Replacement: An Analysis of the PARTNER 2 Trial and Registry. <i>Circulation: Cardiovascular Interventions</i> , 2020 , 13, e008792	6	7
293	Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis. <i>JACC: Cardiovascular Imaging</i> , 2020 , 13, 2591-2601	8.4	5
292	One-Year Outcomes of Mitral Valve-in-Valve Using the SAPIEN 3 Transcatheter Heart Valve. <i>JAMA Cardiology</i> , 2020 , 5, 1245-1252	16.2	45
291	Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. <i>European Heart Journal</i> , 2020 , 41, 3451-3458	9.5	35
290	Outcomes of Patients with Severe Aortic Stenosis and Left Ventricular Obstruction Undergoing Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2020 , 133, 105-115	3	
289	Safety Profile of an Intra-Annular Self-Expanding Transcatheter Aortic Valve and Next-Generation Low-Profile Delivery System. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 2467-2478	5	7
288	Coronary Access After TAVR-in-TAVR as Evaluated by Multidetector Computed Tomography. <i>JACC: Cardiovascular Interventions</i> , 2020 , 13, 2528-2538	5	21
287	Bioprosthetic Valve Thrombosis: Insights from Transcatheter and Surgical Implants. <i>Structural Heart</i> , 2020 , 4, 382-388	0.6	2
286	Bicuspid Aortic Valve Morphology and Outcomes After Transcatheter Aortic Valve Replacement. Journal of the American College of Cardiology, 2020 , 76, 1018-1030	15.1	50
285	Clinical Implications of Physical Function and Resilience in Patients Undergoing Transcatheter Aortic Valve Replacement. <i>Journal of the American Heart Association</i> , 2020 , 9, e017075	6	5
284	Leaflet immobility and thrombosis in transcatheter aortic valve replacement. <i>European Heart Journal</i> , 2020 , 41, 3184-3197	9.5	12
283	Transcatheter aortic valve replacement for bicuspid aortic valve regurgitation in a 17-year-old patient with congenitally corrected transposition of great arteries: a case report. <i>European Heart Journal - Case Reports</i> , 2020 , 4, 1-6	0.9	3
282	Balloon-expandable valve-in-valve for a deformed surgical bioprosthesis. <i>European Heart Journal</i> , 2020 , 41, 932	9.5	
281	Prevalence and Prognostic Impact of Ascending Aortic Dilatation in Patients Undergoing TAVR. <i>JACC: Cardiovascular Imaging</i> , 2020 , 13, 175-177	8.4	3
280	Mechanisms of mitral regurgitation after percutaneous mitral valve repair with the MitraClip. <i>European Heart Journal Cardiovascular Imaging</i> , 2020 , 21, 1131-1143	4.1	6
279	Inter- and intrasite variability of mortality and stroke for sites performing both surgical and transcatheter aortic valve replacement for aortic valve stenosis in intermediate-risk patients. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2020 , 159, 1233-1244.e4	1.5	6

278	Echocardiographic Results of Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients: The PARTNER 3 Trial. <i>Circulation</i> , 2020 , 141, 1527-1537	16.7	43
277	Investigation of Computed-Tomography Based Predictors of Acute Stroke Related to Transcatheter Aortic Valve Replacement: Aortic Wall Plaque Thickness Might be a Predictive Parameter of Stroke. <i>Journal of Invasive Cardiology</i> , 2020 , 32, E18-E26	0.7	3
276	Long-Term Outcomes After Infective Endocarditis After Transcatheter Aortic Valve Replacement. <i>Circulation</i> , 2020 , 142, 1497-1499	16.7	5
275	Pacemaker Implantation and Dependency After Transcatheter Aortic Valve Replacement in the REPRISE III Trial. <i>Journal of the American Heart Association</i> , 2019 , 8, e012594	6	23
274	Antithrombotic Therapy and Cardiovascular Outcomes After Transcatheter Aortic Valve Replacement in Patients With Atrial Fibrillation. <i>JACC: Cardiovascular Interventions</i> , 2019 , 12, 1580-1589	5	22
273	Anticoagulation After Surgical or Transcatheter Bioprosthetic Aortic[Valve[Replacement. <i>Journal of the American College of Cardiology</i> , 2019 , 74, 1190-1200	15.1	22
272	Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis. <i>Journal of the American College of Cardiology</i> , 2019 , 74, 2833-2842	15.1	31
271	Predictors of Left Ventricular Outflow Tract Obstruction After Transcatheter Mitral Valve Replacement. <i>JACC: Cardiovascular Interventions</i> , 2019 , 12, 182-193	5	104
270	Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. <i>Neurology</i> , 2019 , 92, e866-	668 ₹8	43
269	Predictors and Outcomes of Persistent Tricuspid Regurgitation After Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2019 , 124, 772-780	3	3
268	Incidence and outcome of peri-procedural transcatheter heart valve embolization and migration: the TRAVEL registry (TranscatheteR HeArt Valve EmboLization and Migration). <i>European Heart Journal</i> , 2019 , 40, 3156-3165	9.5	45
267	Might Coronary Flow Influence Transcatheter Heart Valve Neo-Sinus Thrombosis?. <i>Circulation:</i> Cardiovascular Interventions, 2019 , 12, e008005	6	4
266	Association Between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke. <i>JAMA - Journal of the American Medical Association</i> , 2019 , 321, 2193-22	2 0 2·4	116
265	New-onset left bundle branch block after transcatheter aortic valve replacement is associated with adverse long-term clinical outcomes in intermediate-risk patients: an analysis from the PARTNER II trial. <i>European Heart Journal</i> , 2019 , 40, 2218-2227	9.5	54
264	Clinical Outcomes of Transcatheter Aortic Valve Implantation in Patients With Extremely Large Annulus and SAPIEN 3 Dimensions Based on Post-Procedural Computed Tomography. <i>Circulation Journal</i> , 2019 , 83, 672-680	2.9	6
263	Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. <i>New England Journal of Medicine</i> , 2019 , 380, 1695-1705	59.2	1849
262	Transcatheter Aortic Valve Replacement Outcomes in Patients With Native vs Transplanted Kidneys: Data From an International Multicenter Registry. <i>Canadian Journal of Cardiology</i> , 2019 , 35, 111	4 ² 1123	8
261	Two-Year Outcomes After Transcatheter Aortic Valve Replacement With Mechanical vs Self-expanding Valves: The REPRISE III Randomized Clinical Trial. <i>JAMA Cardiology</i> , 2019 , 4, 223-229	16.2	27

260	Transcatheter Mitral Valve Replacement in Patients with Severe Mitral Annular Calcification. <i>Interventional Cardiology Clinics</i> , 2019 , 8, 301-312	1.4	4
259	Late Contained Aortic Root Rupture After Transcatheter Aortic Valve Replacement for Bicuspid Aortic Stenosis. <i>JACC: Cardiovascular Interventions</i> , 2019 , 12, e121-e122	5	
258	Outcomes Following Transcatheter Aortic Valve Replacement for Degenerative Stentless Versus Stented Bioprostheses. <i>JACC: Cardiovascular Interventions</i> , 2019 , 12, 1256-1263	5	24
257	Neosinus Flow Stasis Correlates With Thrombus Volume Post-TAVR: A Patient-Specific In Vitro Study. <i>JACC: Cardiovascular Interventions</i> , 2019 , 12, 1288-1290	5	9
256	TCT-8 Updated 30-Day Outcomes for the U.S. Early Feasibility Study of the SAPIEN M3 Transcatheter Mitral Valve Replacement System. <i>Journal of the American College of Cardiology</i> , 2019 , 74, B8	15.1	9
255	Prosthetic Valve Endocarditis After TAVR and SAVR: Insights From the PARTNER Trials. <i>Circulation</i> , 2019 , 140, 1984-1994	16.7	42
254	Infective Endocarditis Following Transcatheter Aortic Valve Replacement: Comparison of Balloon-Versus Self-Expandable Valves. <i>Circulation: Cardiovascular Interventions</i> , 2019 , 12, e007938	6	14
253	Cost-Effectiveness of Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Stenosis at Intermediate Risk. <i>Circulation</i> , 2019 , 139, 877-888	16.7	68
252	Outcomes From Transcatheter Aortic Valve Replacement in Patients With Low-Flow, Low-Gradient Aortic Stenosis and Left Ventricular Ejection Fraction Less Than 30%: A Substudy From the TOPAS-TAVI Registry. <i>JAMA Cardiology</i> , 2019 , 4, 64-70	16.2	37
251	Implications of Left Ventricular Geometry in Low-Flow Aortic Stenosis: A PARTNER 2 Trial Subanalysis. <i>JACC: Cardiovascular Imaging</i> , 2019 , 12, 367-368	8.4	2
250	Rate of peri-procedural stroke observed with cerebral embolic protection during transcatheter aortic valve replacement: a patient-level propensity-matched analysis. <i>European Heart Journal</i> , 2019 , 40, 1334-1340	9.5	52
249	Transcatheter Aortic Valve Replacement in Oncology Patients With Severe Aortic Stenosis. <i>JACC:</i> Cardiovascular Interventions, 2019 , 12, 78-86	5	33
248	Mid-Term Valve-Related Outcomes After Transcatheter Tricuspid Valve-in-Valve or Valve-in-Ring Replacement. <i>Journal of the American College of Cardiology</i> , 2019 , 73, 148-157	15.1	49
247	Outcomes of transcatheter mitral valve replacement for degenerated bioprostheses, failed annuloplasty rings, and mitral annular calcification. <i>European Heart Journal</i> , 2019 , 40, 441-451	9.5	158
246	Characterization of aortic root geometry in transcatheter aortic valve replacement patients. <i>Catheterization and Cardiovascular Interventions</i> , 2019 , 93, 134-140	2.7	8
245	Transcatheter and Doppler waveform correlation in transcatheter aortic valve replacement. <i>Open Heart</i> , 2018 , 5, e000728	3	1
244	Association of postprocedural aortic regurgitation with mitral regurgitation worsened after transcatheter aortic valve replacement. <i>Echocardiography</i> , 2018 , 35, 346-352	1.5	0
243	1-Year Outcomes of Transcatheter Mitral Valve Replacement in Patients With Severe Mitral Annular Calcification. <i>Journal of the American College of Cardiology</i> , 2018 , 71, 1841-1853	15.1	189

242	Percutaneous Management of Aortic Root Rupture During Transcatheter Aortic Valve Replacement With Coil Embolization. <i>Circulation: Cardiovascular Interventions</i> , 2018 , 11, e005590	6	1
241	Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves. <i>Circulation</i> , 2018 , 137, 388-399	16.7	194
240	Outcomes in 937 Intermediate-Risk Patients Undergoing Surgical Aortic Valve Replacement in PARTNER-2A. <i>Annals of Thoracic Surgery</i> , 2018 , 105, 1322-1329	2.7	17
239	Sex-Specific Outcomes of Transcatheter Aortic Valve Replacement With the SAPIEN 3 Valve: Insights From the PARTNER II S3 High-Risk and Intermediate-Risk Cohorts. <i>JACC: Cardiovascular Interventions</i> , 2018 , 11, 13-20	5	25
238	Effect of Mechanically Expanded vs Self-Expanding Transcatheter Aortic Valve Replacement on Mortality and Major Adverse Clinical Events in High-Risk Patients With Aortic Stenosis: The REPRISE III Randomized Clinical Trial. <i>JAMA - Journal of the American Medical Association</i> , 2018 , 319, 27-37	27.4	94
237	Recurrent severe aortic stenosis after transfemoral transcatheter valve-in-valve-in-valve replacement. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2018 , 155, e141-e144	1.5	O
236	Computed tomography characteristics of the aortic valve and the geometry of SAPIEN 3 transcatheter heart valve in patients with bicuspid aortic valve disease. <i>European Heart Journal Cardiovascular Imaging</i> , 2018 , 19, 1408-1418	4.1	29
235	Transcatheter Aortic Valve Replacement in Patients With Low-Flow, Low-Gradient Aortic tenosis: The TOPAS-TAVI Registry. <i>Journal of the American College of Cardiology</i> , 2018 , 71, 1297-1308	15.1	88
234	Complications after Transfemoral Transcatheter Aortic Valve Replacement with a Balloon-Expandable Prosthesis: The Importance of Preventative Measures and Contingency Planning. <i>Catheterization and Cardiovascular Interventions</i> , 2018 , 91, E29-E42	2.7	10
233	Percutaneous transapical pseudoaneurysm closure following transcatheter aortic valve replacement. <i>Catheterization and Cardiovascular Interventions</i> , 2018 , 91, 159-164	2.7	3
232	Transcatheter aortic valve replacement for stenotic bicuspid aortic valves: Systematic review and meta analyses of observational studies. <i>Catheterization and Cardiovascular Interventions</i> , 2018 , 91, 975-	983	31
231	Valve hemodynamic deterioration and cardiovascular outcomes in TAVR: A report from the STS/ACC TVT Registry. <i>American Heart Journal</i> , 2018 , 195, 1-13	4.9	16
230	Transcatheter aortic valve replacement in bicuspid aortic valve stenosis: where do we stand?. Journal of Cardiovascular Surgery, 2018 , 59, 381-391	0.7	3
229	Impact of Resting Heart Rate at 30 Days Following Transcatheter or Surgical Aortic Valve Replacement and Cardiovascular Outcomes: Insights from The PARTNER 2 Trial. <i>Structural Heart</i> , 2018 , 2, 441-447	0.6	
228	Response by Sharma et al to Letter Regarding Article, "The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus". <i>Circulation</i> , 2018 , 137, 2094-2095	16.7	
227	Commissural Alignment of Bioprosthetic Aortic Valve and Native Aortic Valve Following Surgical and Transcatheter Aortic Valve [Replacement and its Impact on Valvular Function and Coronary Filling. JACC: Cardiovascular Interventions, 2018, 11, 1733-1743	5	37
226	Diagnosis and Outcomes of Transcatheter Aortic Valve Implantation in Bicuspid Aortic Valve Stenosis. <i>Interventional Cardiology Review</i> , 2018 , 13, 62-65	4.2	5
225	Early commercial experience from transcatheter aortic valve implantation using the Porticoll bioprosthetic valve: 30-day outcomes in the multicentre PORTICO-1 study. <i>EuroIntervention</i> , 2018 , 14, 886-893	3.1	9

224	Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. <i>European Heart Journal</i> , 2018 , 39, 687-695	9.5	158
223	Stroke After Surgical Versus Transfemoral Transcatheter Aortic Valve Replacement in the PARTNER Trial. <i>Journal of the American College of Cardiology</i> , 2018 , 72, 2415-2426	15.1	29
222	Outcomes of Self-Expanding vs. Balloon-Expandable Transcatheter Heart Valves for the Treatment of Degenerated Aortic Surgical Bioprostheses - A Propensity Score-Matched Comparison. <i>Circulation Journal</i> , 2018 , 82, 2655-2662	2.9	10
221	Outcomes of Patients with Significant Obesity Undergoing TAVR or SAVR in the Randomized PARTNER 2A Trial. <i>Structural Heart</i> , 2018 , 2, 500-511	0.6	O
220	Cancellation of the Cardiac Catheterization Lab After Activation for ST-Segment-Elevation Myocardial Infarction. <i>Circulation: Cardiovascular Quality and Outcomes</i> , 2018 , 11, e004464	5.8	6
219	Transcatheter Aortic Valve Replacement for Bicuspid Aortic Valve: Challenges and Pitfalls. <i>Interventional Cardiology Clinics</i> , 2018 , 7, 477-488	1.4	5
218	Debris Heterogeneity Across Different Valve Types Captured by a Cerebral Protection System During Transcatheter Aortic Valve Replacement. <i>JACC: Cardiovascular Interventions</i> , 2018 , 11, 1262-127	3 ⁵	22
217	Impact of Aortic Root Anatomy and Geometry on Paravalvular Leak in Transcatheter Aortic Valve Replacement With Extremely Large Annuli Using the Edwards SAPIEN 3 Valve. <i>JACC: Cardiovascular Interventions</i> , 2018 , 11, 1377-1387	5	18
216	Outcome of paravalvular leak repair after transcatheter aortic valve replacement with a balloon-expandable prosthesis. <i>Catheterization and Cardiovascular Interventions</i> , 2017 , 89, 462-468	2.7	5
215	Geometric changes in ventriculoaortic complex after transcatheter aortic valve replacement and its association with post-procedural prosthesis-patient mismatch: an intraprocedural 3D-TEE study. <i>European Heart Journal Cardiovascular Imaging</i> , 2017 , 18, 1-10	4.1	6
214	The Ethics of Interventional Procedures for Patients Too Ill for Surgery. <i>JAMA - Journal of the American Medical Association</i> , 2017 , 317, 359-360	27.4	3
213	Transcatheter Valve-in-Ring Implantation for the Treatment of Residual for Recurrent Tricuspid Valve Dysfunction After Prior Surgical Repair. <i>JACC: Cardiovascular Interventions</i> , 2017 , 10, 53-63	5	59
212	Short-term results of alcohol septal ablation as a bail-out strategy to treat severe left ventricular outflow tract obstruction after transcatheter mitral valve replacement in patients with severe mitral annular calcification. <i>Catheterization and Cardiovascular Interventions</i> , 2017 , 90, 1220-1226	2.7	63
211	A Highly Predictive Risk Model for Pacemaker Implantation After TAVR. <i>JACC: Cardiovascular Imaging</i> , 2017 , 10, 1139-1147	8.4	121
210	Safety and Efficacy of Transcatheter Aortic Valve Replacement in the Treatment of Pure Aortic Regurgitation in Native Valves and Failing Surgical Bioprostheses: Results From an International Registry Study. <i>JACC: Cardiovascular Interventions</i> , 2017 , 10, 1048-1056	5	71
209	Transcatheter Aortic Valve Implantation Within Degenerated Aortic Surgical Bioprostheses: PARTNER 2 Valve-in-Valve Registry. <i>Journal of the American College of Cardiology</i> , 2017 , 69, 2253-2262	15.1	207
208	Effect of ascending aortic dimension on acute procedural success following self-expanding transcatheter aortic valve replacement: A multicenter retrospective analysis. <i>International Journal of Cardiology</i> , 2017 , 244, 100-105	3.2	10
207	Systematic CT Methodology for the Evaluation of Subclinical Leaflet Thrombosis. <i>JACC:</i> Cardiovascular Imaging, 2017 , 10, 461-470	8.4	84

(2017-2017)

206	Long-term clinical and angiographic outcomes of percutanenous coronary intervention with everolimus-eluting stents for the treatment of cardiac allograft vasculopathy. <i>Catheterization and Cardiovascular Interventions</i> , 2017 , 90, 48-55	2.7	12
205	Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis. <i>Journal of the American College of Cardiology</i> , 2017 , 69, 2579-2589	15.1	240
204	Severe aortic stenosis with low aortic valve calcification: characteristics and outcome following transcatheter aortic valve implantation. <i>European Heart Journal Cardiovascular Imaging</i> , 2017 , 18, 639-6	54 7 1	11
203	Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. <i>New England Journal of Medicine</i> , 2017 , 376, 1321-1331	59.2	1524
202	Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. <i>Lancet, The</i> , 2017 , 389, 2383-2392	40	479
201	Longitudinal Hemodynamics of Transcatheter and Surgical Aortic Valves in the PARTNER Trial. <i>JAMA Cardiology</i> , 2017 , 2, 1197-1206	16.2	54
200	Association of Paravalvular Regurgitation With 1-Year Outcomes After Transcatheter Aortic Valve Replacement With the SAPIEN 3 Valve. <i>JAMA Cardiology</i> , 2017 , 2, 1208-1216	16.2	89
199	First ever transmitral valve in valve replacement in India. <i>Indian Heart Journal</i> , 2017 , 69, 801-802	1.6	
198	Relation of Residual Mitral Regurgitation Despite Elevated Mitral Gradients to Risk of Heart Failure Hospitalization After MitraClip Repair. <i>American Journal of Cardiology</i> , 2017 , 120, 1595-1600	3	16
197	Transcatheter Aortic Valve Replacement for Failed Surgical Bioprostheses: Insights from the PARTNER II Valve-in-Valve Registry on Utilizing Baseline Computed-Tomographic Assessment. <i>Structural Heart</i> , 2017 , 1, 34-39	0.6	2
196	Transcatheter Mitral Valve Replacement for Degenerated Bioprosthetic Valves and Failed Annuloplasty Rings. <i>Journal of the American College of Cardiology</i> , 2017 , 70, 1121-1131	15.1	134
195	Relation Between Left Ventricular Outflow Tract Calcium and Mortality Following Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2017 , 120, 2017-2024	3	17
194	ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: Rationale and Design. <i>Cell Transplantation</i> , 2017 , 26, 205-214	4	69
193	The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus. <i>Circulation</i> , 2017 , 136, 1598-1609	16.7	97
192	Staging classification of aortic stenosis based on the extent of cardiac damage. <i>European Heart Journal</i> , 2017 , 38, 3351-3358	9.5	140
191	Transcatheter Aortic Valve Replacement in Pure Native Aortic Valve Regurgitation. <i>Journal of the American College of Cardiology</i> , 2017 , 70, 2752-2763	15.1	117
190	Clinical Impact of Diabetes Mellitus on Outcomes After Transcatheter Aortic Valve Replacement: Insights From the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. <i>Circulation: Cardiovascular Interventions</i> , 2017 , 10,	6	9
189	Health Status Benefits of Transcatheter vs Surgical Aortic Valve Replacement in Patients With Severe Aortic Stenosis at Intermediate Surgical Risk: Results From the PARTNER 2 Randomized Clinical Trial IAMA Cardiology 2017	16.2	68

188	Natural history of subclinical leaflet thrombosis affecting motion in bioprosthetic aortic valves. European Heart Journal, 2017 , 38, 2201-2207	9.5	115
187	Protection Against Cerebral Embolism During Transcatheter Aortic Valve Replacement. <i>Journal of the American College of Cardiology</i> , 2017 , 69, 367-377	15.1	262
186	Impact of Mitral Annular Displacement on Left Ventricular Diastolic Function Improvement After Transcatheter Aortic Valve Implantation. <i>Circulation Journal</i> , 2017 , 81, 558-566	2.9	2
185	Transcatheter Aortic Valve Replacement With Different Valve Types in Elliptic Aortic Annuli. <i>Circulation Journal</i> , 2017 , 81, 1036-1042	2.9	9
184	Clinical outcomes and prognostic factors of transcatheter aortic valve implantation in bicuspid aortic valve patients. <i>Annals of Cardiothoracic Surgery</i> , 2017 , 6, 463-472	4.7	16
183	Optimal sizing for SAPIEN 3 transcatheter aortic valve replacement in patients with or without left ventricular outflow tract calcification. <i>EuroIntervention</i> , 2017 , 12, e2177-e2185	3.1	11
182	Characteristics and outcome following transcatheter aortic valve replacement in patients with severe aortic stenosis with low flow. <i>EuroIntervention</i> , 2017 , 13, e1428-e1435	3.1	10
181	Concomitant mitral annular calcification and severe aortic stenosis: prevalence, characteristics and outcome following transcatheter aortic valve replacement. <i>European Heart Journal</i> , 2017 , 38, 1194-120	3 9.5	61
180	Long-Term Valve Performance of TAVR and SAVR: A Report From the PARTNER I Trial. <i>JACC:</i> Cardiovascular Imaging, 2016 ,	8.4	58
179	Computing Methods for Composite Clinical Endpoints in Unprotected Left Main Coronary Artery Revascularization: A Post Hoc Analysis of the DELTA Registry. <i>JACC: Cardiovascular Interventions</i> , 2016 , 9, 2280-2288	5	17
178	Association Between Transcatheter Aortic Valve Replacement and Subsequent Infective Endocarditis and In-Hospital Death. <i>JAMA - Journal of the American Medical Association</i> , 2016 , 316, 1083	3 2 4	160
177	One-Year Clinical Outcomes With SAPIEN 3 Transcatheter Aortic Valve Replacement in High-Risk and Inoperable Patients With Severe Aortic Stenosis. <i>Circulation</i> , 2016 , 134, 130-40	16.7	136
176	Aortic Angulation Attenuates Procedural Success Following Self-Expandable But[Not Balloon-Expandable TAVR. <i>JACC: Cardiovascular Imaging</i> , 2016 , 9, 964-72	8.4	50
175	Transcatheter Aortic Valve Replacement Using the Portico System: 10 Things to Remember. <i>Journal of Interventional Cardiology</i> , 2016 , 29, 523-529	1.8	10
174	Transcatheter tricuspid valve replacement along with tricuspid paravalvular leak closure in a patient with severe right heart failure and previous transcatheter pulmonary valve replacement. <i>International Journal of Cardiology</i> , 2016 , 202, 198-9	3.2	
173	Learning curves for transapical transcatheter aortic valve replacement in the PARTNER-I trial: Technical performance, success, and safety. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2016 , 152, 773-780.e14	1.5	26
172	Balloon-expandable transcatheter aortic valve replacement in patients with extreme aortic valve calcification. <i>Catheterization and Cardiovascular Interventions</i> , 2016 , 87, 1173-9	2.7	11
171	Impact of body mass index on the outcomes following transcatheter aortic valve implantation. <i>Catheterization and Cardiovascular Interventions</i> , 2016 , 88, 127-34	2.7	14

170	3D Intracardiac Echocardiography During TAVR Without Endotracheal Intubation. <i>JACC:</i> Cardiovascular Imaging, 2016 , 9, 1014-5	8.4	6
169	Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Technical performance. <i>Catheterization and Cardiovascular Interventions</i> , 2016 , 87, 154-62	2.7	51
168	Outcomes in Patients With Transcatheter Aortic Valve Replacement and Left Main Stenting: The TAVR-LM Registry. <i>Journal of the American College of Cardiology</i> , 2016 , 67, 951-960	15.1	63
167	Impact of Diabetes Mellitus on Outcomes After Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2016 , 117, 1636-1642	3	27
166	3D Assessment of Features Associated With Transvalvular Aortic Regurgitation After TAVR: A Real-Time 3D TEE Study. <i>JACC: Cardiovascular Imaging</i> , 2016 , 9, 114-23	8.4	12
165	Long-term clinical outcomes after percutaneous coronary intervention versus coronary artery bypass grafting for acute coronary syndrome from the DELTA registry: a multicentre registry evaluating percutaneous coronary intervention versus coronary artery bypass grafting for left main	3.1	12
164	The clinical impact of vascular complications as defined by VARC-1 vs. VARC-2 in patients following transcatheter aortic valve implantation. <i>EuroIntervention</i> , 2016 , 12, e636-42	3.1	6
163	Comparison of SAPIEN 3 and SAPIEN XT transcatheter heart valve stent-frame expansion: evaluation using multi-slice computed tomography. <i>European Heart Journal Cardiovascular Imaging</i> , 2016 , 17, 1054-62	4.1	36
162	A Bicuspid Aortic Valve Imaging Classification[for[the TAVR Era. <i>JACC: Cardiovascular Imaging</i> , 2016 , 9, 1145-1158	8.4	124
161	Prosthetic Heart Valve Thrombosis. <i>Journal of the American College of Cardiology</i> , 2016 , 68, 2670-2689	15.1	212
160	TCT-36 Frailty in Intermediate Risk Patients Undergoing Transcatheter or Surgical Aortic Valve Replacement, Cut Points and Relationship With Outcomes: An Analysis of the Placement of Aortic Transcatheter Valves (PARTNER) 2 Cohort A Randomized Trial. <i>Journal of the American College of</i>	15.1	3
159	Cardiology, 2016 , 68, B15 Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. <i>New England Journal of Medicine</i> , 2016 , 374, 1609-20	59.2	2746
158	Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. <i>Lancet, The</i> , 2016 , 387, 2218-25	40	697
157	Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. <i>European Heart Journal</i> , 2016 , 37, 2252-62	9.5	247
156	Elevated immune monitoring as measured by increased adenosine triphosphate production in activated lymphocytes is associated with accelerated development of cardiac allograft vasculopathy after cardiac transplantation. <i>Journal of Heart and Lung Transplantation</i> , 2016 , 35, 1018-2.	5.8 3	5
155	Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. <i>New England Journal of Medicine</i> , 2016 , 374, 1591-2	59.2	34
154	Outcomes of Redo Transcatheter Aortic Valve Replacement for the Treatment of Postprocedural and Late Occurrence of Paravalvular Regurgitation and Transcatheter Valve Failure. <i>Circulation: Cardiovascular Interventions</i> , 2016 , 9,	6	59
153	Insights Into Timing, Risk Factors, and Outcomes of Stroke and Transient Ischemic Attack After Transcatheter Aortic Valve Replacement in the PARTNER Trial (Placement of Aortic Transcatheter Valves). Circulation: Cardiovascular Interventions. 2016, 9	6	89

152	Impact of Preoperative Chronic Kidney Disease in 2,531 High-Risk and Inoperable Patients Undergoing Transcatheter Aortic Valve Replacement in the PARTNER Trial. <i>Annals of Thoracic Surgery</i> , 2016 , 102, 1172-80	2.7	51
151	The outcomes of transcatheter aortic valve replacement in a cohort of patients with end-stage renal disease. <i>Catheterization and Cardiovascular Interventions</i> , 2016 , 87, 1314-21	2.7	22
150	Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Success and safety. <i>Catheterization and Cardiovascular Interventions</i> , 2016 , 87, 165-75	2.7	56
149	Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. <i>Circulation: Heart Failure</i> , 2015 , 8, 322-32	7.6	65
148	Porcelain aorta: a comprehensive review. <i>Circulation</i> , 2015 , 131, 827-36	16.7	56
147	5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. <i>Lancet, The,</i> 2015 , 385, 2477-84	40	1042
146	5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. <i>Lancet, The</i> , 2015 , 385, 2485-91	40	549
145	Infective endocarditis after transcatheter aortic valve implantation: results from a large multicenter registry. <i>Circulation</i> , 2015 , 131, 1566-74	16.7	162
144	Alternative access for balloon-expandable transcatheter aortic valve replacement: comparison of the transaortic approach using right anterior thoracotomy to partial J-sternotomy. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2015 , 149, 789-97	1.5	6
143	Impact of device landing zone calcification on paravalvular regurgitation after transcatheter aortic valve replacement: a real-time three-dimensional transesophageal echocardiographic study. Journal of the American Society of Echocardiography, 2015, 28, 404-14	5.8	17
142	Coronary obstruction in transcatheter aortic valve-in-valve implantation: preprocedural evaluation, device selection, protection, and treatment. <i>Circulation: Cardiovascular Interventions</i> , 2015 , 8,	6	135
141	Utilization and adverse outcomes of percutaneous left atrial appendage closure for stroke prevention in atrial fibrillation in the United States: influence of hospital volume. <i>Circulation: Arrhythmia and Electrophysiology</i> , 2015 , 8, 42-8	6.4	43
140	Assessment of Post-Procedural Aortic Regurgitation After TAVR: An Intraprocedural TEE Study. JACC: Cardiovascular Imaging, 2015 , 8, 993-1003	8.4	25
139	Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. <i>New England Journal of Medicine</i> , 2015 , 373, 2015-24	59.2	627
138	Changes in speckle tracking echocardiography measures of ventricular function after percutaneous implantation of the Edwards SAPIEN transcatheter heart valve in the pulmonary position. <i>Echocardiography</i> , 2015 , 32, 461-9	1.5	8
137	Mitral Annulus Calcification. Journal of the American College of Cardiology, 2015, 66, 1934-41	15.1	207
136	Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. <i>Heart</i> , 2015 , 101, 1665-71	5.1	92
135	Comparison of Outcomes of Transcatheter Aortic Valve Implantation in Patients B 0[Years Versus . <i>American Journal of Cardiology</i> , 2015 , 116, 1110-5	3	28

(2015-2015)

134	Speckle-Tracking Echocardiographic Measures of Right Ventricular Function Correlate With Improvement in Exercise Function After Percutaneous Pulmonary Valve Implantation. <i>Journal of the American Society of Echocardiography</i> , 2015 , 28, 1036-44	5.8	19
133	Comparison of vascular closure devices for access site closure after transfemoral aortic valve implantation. <i>European Heart Journal</i> , 2015 , 36, 3370-9	9.5	97
132	Impact of Preprocedural B-Type Natriuretic Peptide Levels on the Outcomes After Transcatheter Aortic Valve Implantation. <i>American Journal of Cardiology</i> , 2015 , 116, 1904-9	3	24
131	Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. <i>European Heart Journal</i> , 2015 , 36, 751-62	9.5	64
130	Leptin enhances endothelial cell differentiation and angiogenesis in murine embryonic stem cells. <i>Microvascular Research</i> , 2015 , 97, 65-74	3.7	11
129	Response to Letters Regarding Article, "Infective Endocarditis After Transcatheter Aortic Valve Implantation: Results From a Large Multicenter Registry". <i>Circulation</i> , 2015 , 132, e372-4	16.7	2
128	Significant Reduction in Mitral Regurgitation Volume Is the Main Contributor for Increase in Systolic Forward Flow in Patients with Functional Mitral Regurgitation after Transcatheter Aortic Valve Replacement: Hemodynamic Analysis Using Echocardiography. <i>Echocardiography</i> , 2015 , 32, 1621-	1.5 7	6
127	Major thrombocytopenia after balloon-expandable transcatheter aortic valve replacement: prognostic implications and comparison to surgical aortic valve replacement. <i>Catheterization and Cardiovascular Interventions</i> , 2015 , 85, 130-7	2.7	36
126	Transfemoral access assessment for transcatheter aortic valve replacement: evidence-based application of computed tomography over invasive angiography. <i>Circulation: Cardiovascular Imaging</i> , 2015 , 8,	3.9	29
125	The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. <i>Journal of Cardiovascular Computed Tomography</i> , 2015 , 9, 382-9	2 ^{.8}	62
124	Clinical and Functional Outcomes Associated With Myocardial Injury After Transfemoral and Transapical Transcatheter Aortic Valve Replacement: A Subanalysis From the PARTNER Trial (Placement of Aortic Transcatheter Valves). <i>JACC: Cardiovascular Interventions</i> , 2015 , 8, 1468-1479	5	29
123	Response to Letter Regarding Article "Impact of Annual Operator and Institutional Volume on Percutaneous Coronary Intervention Outcomes: A 5-Year United States Experience (2005-2009)". <i>Circulation</i> , 2015 , 132, e36-7	16.7	1
122	Response to Letter Regarding Article, "Long-Term Outcomes of Inoperable Patients With Aortic Stenosis Randomly Assigned to Transcatheter Aortic Valve Replacement or Standard Therapy". <i>Circulation</i> , 2015 , 132, e118-9	16.7	2
121	A Randomized Evaluation of the SAPIEN XT Transcatheter Heart Valve System in Patients With Aortic Stenosis Who Are Not Candidates for Surgery. <i>JACC: Cardiovascular Interventions</i> , 2015 , 8, 1797-8	з б 6	74
120	Outcomes in Nonagenarians Undergoing Transcatheter Aortic Valve Replacement in the PARTNER-I Trial. <i>Annals of Thoracic Surgery</i> , 2015 , 100, 785-92; discussion 793	2.7	35
119	Cardiopulmonary bypass and intra-aortic balloon pump use is associated with higher short and long term mortality after transcatheter aortic valve replacement: a PARTNER trial substudy. <i>Catheterization and Cardiovascular Interventions</i> , 2015 , 86, 316-22	2.7	20
118	Outcomes of inoperable symptomatic aortic stenosis patients not undergoing aortic valve replacement: insight into the impact of balloon aortic valvuloplasty from the PARTNER trial (Placement of AoRtic TraNscathetER Valve trial). <i>JACC: Cardiovascular Interventions</i> , 2015 , 8, 324-333	5	42
117	Meta-analysis of the impact of mitral regurgitation on outcomes after transcatheter aortic valve implantation. <i>American Journal of Cardiology</i> , 2015 , 115, 942-9	3	69

116	Comparison of outcomes of balloon aortic valvuloplasty plus percutaneous coronary intervention versus percutaneous aortic balloon valvuloplasty alone during the same hospitalization in the United States. <i>American Journal of Cardiology</i> , 2015 , 115, 480-6	3	15
115	Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TraNscathetER Valves) trial and registry. JACC: Cardiovascular Interventions, 2015, 8, 60-9	5	334
114	Clinical impact of coronary protection during transcatheter aortic valve implantation: first reported series of patients. <i>EuroIntervention</i> , 2015 , 11, 572-81	3.1	50
113	Percutaneous paravalvular leak closure for balloon-expandable transcatheter aortic valve replacement: a comparison with surgical aortic valve replacement paravalvular leak closure. <i>Journal of Invasive Cardiology</i> , 2015 , 27, 284-90	0.7	7
112	Comparison of percutaneous coronary intervention (with drug-eluting stents) versus coronary artery bypass grafting in women with severe narrowing of the left main coronary artery (from the Women-Drug-Eluting stent for LefT main coronary Artery disease Registry). American Journal of	3	11
111	Outcomes of patients with chronic lung disease and severe aortic stenosis treated with transcatheter versus surgical aortic valve replacement or standard therapy: insights from the PARTNER trial (placement of AoRTic TraNscathetER Valve). Journal of the American College of	15.1	75
110	Bleeding complications after surgical aortic valve replacement compared with transcatheter aortic valve replacement: insights from the PARTNER I Trial (Placement of Aortic Transcatheter Valve). Journal of the American College of Cardiology, 2014, 63, 1100-9	15.1	127
109	Transseptal closure of left ventricular pseudoaneurysm post-transapical transcatheter aortic valve replacement. <i>JACC: Cardiovascular Interventions</i> , 2014 , 7, e177-8	5	11
108	Outcomes after transfemoral transcatheter aortic valve replacement: a comparison of the randomized PARTNER (Placement of AoRTic TraNscathetER Valves) trial with the NRCA (Nonrandomized Continued Access) registry. <i>JACC: Cardiovascular Interventions</i> , 2014 , 7, 1245-51	5	22
107	Impact of annual operator and institutional volume on percutaneous coronary intervention outcomes: a 5-year United States experience (2005-2009). <i>Circulation</i> , 2014 , 130, 1392-406	16.7	114
106	Comprehensive analysis of mortality among patients undergoing TAVR: results of the PARTNER trial. <i>Journal of the American College of Cardiology</i> , 2014 , 64, 158-68	15.1	58
105	Outcomes with post-dilation following transcatheter aortic valve replacement: the PARTNER I trial (placement of aortic transcatheter valve). <i>JACC: Cardiovascular Interventions</i> , 2014 , 7, 781-9	5	73
104	Effect of transcatheter aortic valve replacement on the mitral valve apparatus and mitral regurgitation: real-time three-dimensional transesophageal echocardiography study. <i>Circulation: Cardiovascular Imaging</i> , 2014 , 7, 344-51	3.9	34
103	Early regression of severe left ventricular hypertrophy after transcatheter aortic valve replacement is associated with decreased hospitalizations. <i>JACC: Cardiovascular Interventions</i> , 2014 , 7, 662-73	5	97
102	Percutaneous aortic balloon valvotomy in the United States: a 13-year perspective. <i>American Journal of Medicine</i> , 2014 , 127, 744-753.e3	2.4	40
101	The relative performance characteristics of the logistic European System for Cardiac Operative Risk Evaluation score and the Society of Thoracic Surgeons score in the Placement of Aortic Transcatheter Valves trial. <i>Journal of Thoracic and Cardiovascular Surgery</i> , 2014 , 148, 2830-7.e1	1.5	51
100	Balloon mitral valvuloplasty in the United States: a 13-year perspective. <i>American Journal of Medicine</i> , 2014 , 127, 1126.e1-1126.e12	2.4	19
99	Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. <i>PLoS ONE</i> , 2014 , 9, e113805	3.7	40

98	A revised methodology for aortic-valvar complex calcium quantification for transcatheter aortic valve implantation. <i>European Heart Journal Cardiovascular Imaging</i> , 2014 , 15, 1324-32	4.1	103
97	Clinical implications of new-onset left bundle branch block after transcatheter aortic valve replacement: analysis of the PARTNER experience. <i>European Heart Journal</i> , 2014 , 35, 1599-607	9.5	149
96	Complete percutaneous approach for arterial access in transfemoral transcatheter aortic valve replacement: a comparison with surgical cut-down and closure. <i>Catheterization and Cardiovascular Interventions</i> , 2014 , 84, 293-300	2.7	54
95	Device landing zone calcification predicts significant paravalvular regurgitation after transcatheter aortic valve replacement: a real time three-dimensional transesophageal echocardiography study. <i>Echocardiography</i> , 2014 , 31, E142-4	1.5	1
94	Clinical and angiographic outcomes with everolimus eluting stents for the treatment of cardiac allograft vasculopathy. <i>Journal of Interventional Cardiology</i> , 2014 , 27, 73-9	1.8	11
93	Long-term outcomes of inoperable patients with aortic stenosis randomly assigned to transcatheter aortic valve replacement or standard therapy. <i>Circulation</i> , 2014 , 130, 1483-92	16.7	125
92	Letter by Makkar et al regarding article, "Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions". <i>Circulation Research</i> , 2014 , 115, e32	15.7	1
91	Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). <i>Journal of the American College of Cardiology</i> , 2014 ,	15.1	379
90	Long-term outcomes of percutaneous coronary interventions or coronary artery bypass grafting for left main coronary artery disease in octogenarians (from a Drug-Eluting stent for LefT main Artery registry substudy). <i>American Journal of Cardiology</i> , 2014 , 113, 2007-12	3	23
89	Stratification of outcomes after transcatheter aortic valve replacement according to surgical inoperability for technical versus clinical reasons. <i>Journal of the American College of Cardiology</i> , 2014 , 63, 901-11	15.1	46
88	Long-term clinical outcomes after percutaneous coronary intervention versus coronary artery bypass grafting for ostial/midshaft lesions in unprotected left main coronary artery from the DELTA registry: a multicenter registry evaluating percutaneous coronary intervention versus	5	38
87	coronary artery bypass grafting for left main treatment. <i>JACC: Cardiovascular Interventions</i> , 2014 , 7, 3: Transcatheter Aortic Valve Replacement: What the Near-Term Future Holds and What Evidence Is Needed? 2014 , 71-83	54-61	
86	Case-Based Examples of Complications Associated with Transcatheter Aortic Valve Replacement 2014 , 417-438		
85	Intraprocedural Use of Echocardiography for TAVR 2014 , 393-402		
84	Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. <i>Journal of the American College of Cardiology</i> , 2013 , 62, 1552-62	15.1	361
83	Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. <i>Journal of the American College of Cardiology</i> , 2013 , 61, 908-16	15.1	139
82	Long-term clinical outcomes after percutaneous coronary intervention for ostial/mid-shaft lesions versus distal bifurcation lesions in unprotected left main coronary artery: the DELTA Registry (drug-eluting stent for left main coronary artery disease): a multicenter registry evaluating	5	61
81	Determinants and outcomes of acute transcatheter valve-in-valve therapy or embolization: a study of multiple valve implants in the U.S. PARTNER trial (Placement of AoRTic Transcatheter Valve Trial Edwards SAPIEN Transcatheter Heart Valve). Journal of the American College of Cardiology,	15.1	116

80	Transapical aortic valve replacement for severe aortic stenosis: results from the nonrandomized continued access cohort of the PARTNER trial. <i>Annals of Thoracic Surgery</i> , 2013 , 96, 2083-9	2.7	51
79	Comparison of transcatheter and surgical aortic valve replacement in severe aortic stenosis: a longitudinal study of echocardiography parameters in cohort A of the PARTNER trial (placement of aortic transcatheter valves). <i>Journal of the American College of Cardiology</i> , 2013 , 61, 2514-21	15.1	181
78	Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. <i>Circulation</i> , 2013 , 128, 2764	- 1 6·7	86
77	Impact of preoperative moderate/severe mitral regurgitation on 2-year outcome after transcatheter and surgical aortic valve replacement: insight from the Placement of Aortic Transcatheter Valve (PARTNER) Trial Cohort A. <i>Circulation</i> , 2013 , 128, 2776-84	16.7	101
76	Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. <i>Circulation</i> , 2013 , 128, 244-53	16.7	354
75	Early echocardiographic changes after percutaneous implantation of the Edwards SAPIEN transcatheter heart valve in the pulmonary position. <i>Echocardiography</i> , 2013 , 30, 786-93	1.5	12
74	Pre-emptive positioning of a coronary stent in the left anterior descending artery for left main protection: a prerequisite for transcatheter aortic valve-in-valve implantation for failing stentless bioprostheses?. <i>Catheterization and Cardiovascular Interventions</i> , 2013 , 82, E630-6	2.7	22
73	Leaflet length and left main coronary artery occlusion following transcatheter aortic valve replacement. <i>Catheterization and Cardiovascular Interventions</i> , 2013 , 82, E754-9	2.7	21
72	How should I treat severe paravalvular leakage after TAVI?. EuroIntervention, 2013, 9, 650-3	3.1	1
71	Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The</i> , 2012 , 379, 895-904	40	1108
71 70		40	1108
	(CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The</i> , 2012 , 379, 895-904		
70	(CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The</i> , 2012 , 379, 895-904 Cardiosphere-derived cells for heart regeneration [Authors[reply. <i>Lancet, The</i> , 2012 , 379, 2426-2427 Two-year outcomes after transcatheter or surgical aortic-valve replacement. <i>New England Journal</i>	40	3
7° 69	(CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The</i> , 2012 , 379, 895-904 Cardiosphere-derived cells for heart regeneration [Authors[reply. <i>Lancet, The</i> , 2012 , 379, 2426-2427 Two-year outcomes after transcatheter or surgical aortic-valve replacement. <i>New England Journal of Medicine</i> , 2012 , 366, 1686-95 Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. <i>New England Journal</i>	40	3 1737
70 69 68	(CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The,</i> 2012 , 379, 895-904 Cardiosphere-derived cells for heart regeneration [Authors[reply. <i>Lancet, The,</i> 2012 , 379, 2426-2427 Two-year outcomes after transcatheter or surgical aortic-valve replacement. <i>New England Journal of Medicine,</i> 2012 , 366, 1686-95 Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. <i>New England Journal of Medicine,</i> 2012 , 366, 1696-704 Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic	40 59.2 59.2	3 1737 958
7° 69 68	(CADUCEUS): a prospective, randomised phase 1 trial. <i>Lancet, The,</i> 2012 , 379, 895-904 Cardiosphere-derived cells for heart regeneration [Authors[reply. <i>Lancet, The,</i> 2012 , 379, 2426-2427 Two-year outcomes after transcatheter or surgical aortic-valve replacement. <i>New England Journal of Medicine,</i> 2012 , 366, 1686-95 Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. <i>New England Journal of Medicine,</i> 2012 , 366, 1696-704 Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. <i>Journal of the American College of Cardiology,</i> 2012 , 59, 1275-86 Transcatheter aortic valve replacement with the St. Jude Medical Portico valve: first-in-human	40 59.2 59.2	3 1737 958 392
7° 69 68 67 66	Cardiosphere-derived cells for heart regeneration [Authors[reply. Lancet, The, 2012, 379, 895-904] Two-year outcomes after transcatheter or surgical aortic-valve replacement. New England Journal of Medicine, 2012, 366, 1686-95 Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. New England Journal of Medicine, 2012, 366, 1696-704 Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. Journal of the American College of Cardiology, 2012, 59, 1275-86 Transcatheter aortic valve replacement with the St. Jude Medical Portico valve: first-in-human experience. Journal of the American College of Cardiology, 2012, 60, 581-6 Vascular complications after transcatheter aortic valve replacement: insights from the PARTNER (Placement of AoRTic TranscatheteR Valve) trial. Journal of the American College of Cardiology,	40 59.2 59.2 15.1	3 1737 958 392 103

(2009-2012)

62	Meta-analysis of complications in aortic valve replacement: comparison of Medtronic-Corevalve, Edwards-Sapien and surgical aortic valve replacement in 8,536 patients. <i>Catheterization and Cardiovascular Interventions</i> , 2012 , 80, 128-38	2.7	88
61	Prognostic impact of aortic regurgitation after transcatheter aortic valve implantation. <i>EuroIntervention</i> , 2012 , 8 Suppl Q, Q31-3	3.1	9
60	Contemporary application of cardiovascular hemodynamics: transcatheter aortic valve interventions. <i>Cardiology Clinics</i> , 2011 , 29, 211-22	2.5	5
59	Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. <i>Journal of the American College of Cardiology</i> , 2011 , 57, 455-65	15.1	187
58	Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: early phase 1 results from an international multicenter clinical trial. <i>Journal of the American College of Cardiology</i> , 2011 , 58, 2248-56	15.1	202
57	Contemporary application of cardiovascular hemodynamics: transcatheter mitral valve interventions. <i>Cardiology Clinics</i> , 2011 , 29, 201-9	2.5	12
56	Predictive accuracy of SYNTAX score for predicting long-term outcomes of unprotected left main coronary artery revascularization. <i>American Journal of Cardiology</i> , 2011 , 107, 360-6	3	84
55	Drug-resistant hypertension: is renal sympathetic denervation the answer?. <i>Current Cardiology Reports</i> , 2011 , 13, 93-5	4.2	2
54	Transcatheter versus surgical aortic-valve replacement in high-risk patients. <i>New England Journal of Medicine</i> , 2011 , 364, 2187-98	59.2	4230
53	Transcatheter aortic valve implantation: patient selection and procedural considerations. <i>Future Cardiology</i> , 2011 , 7, 499-509	1.3	1
52	Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. <i>Circulation</i> , 2011 , 124, 1964-72	16.7	231
51	Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. <i>New England Journal of Medicine</i> , 2010 , 363, 1597-607	59.2	4801
50	Computed Tomography for Percutaneous Aortic Valve Replacement 2010 , 110-117		
49	Meta-analysis of incidence, clinical characteristics and implications of stent fracture. <i>American Journal of Cardiology</i> , 2010 , 106, 1075-80	3	85
48	Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. <i>PLoS ONE</i> , 2009 , 4, e7195	3.7	229
47	New paradigms of myocardial regeneration post-infarction: tissue preservation, cell environment, and pluripotent cell sources. <i>JACC: Cardiovascular Interventions</i> , 2009 , 2, 1-8	5	24
46	A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial): initial U.S. experience. <i>JACC: Cardiovascular Interventions</i> , 2009 , 2, 91-6	5	254
45	A meta-analysis of 3,773 patients treated with percutaneous coronary intervention or surgery for unprotected left main coronary artery stenosis. <i>JACC: Cardiovascular Interventions</i> , 2009 , 2, 739-47	5	98

44	Long-term outcome of stem cell therapy for acute myocardial infarction: right results, wrong reasons. <i>Journal of the American College of Cardiology</i> , 2009 , 53, 2270-2	15.1	27
43	Comparison of coronary artery bypass surgery and percutaneous drug-eluting stent implantation for treatment of left main coronary artery stenosis. <i>JACC: Cardiovascular Interventions</i> , 2008 , 1, 236-45	5	70
42	Stent fracture associated with drug-eluting stents: clinical characteristics and implications. <i>Catheterization and Cardiovascular Interventions</i> , 2007 , 69, 387-94	2.7	148
41	Comparison of drug-eluting stents with bare metal stents in unselected patients with acute myocardial infarction. <i>Catheterization and Cardiovascular Interventions</i> , 2007 , 70, 1-8	2.7	12
40	The effect of granulocyte colony stimulating factor on regional and global myocardial function in the porcine infarct model. <i>International Journal of Cardiology</i> , 2007 , 116, 225-30	3.2	9
39	Comparison of bypass surgery with drug-eluting stents for diabetic patients with multivessel disease. <i>International Journal of Cardiology</i> , 2007 , 123, 34-42	3.2	52
38	Coronary sinus is dilated and outwardly displaced in patients with mitral regurgitation: quantitative angiographic analysis. <i>Catheterization and Cardiovascular Interventions</i> , 2006 , 67, 490-4	2.7	17
37	Intracoronary administration of abciximab during percutaneous coronary interventions: should this be the routine and preferred approach?. <i>Journal of Cardiovascular Pharmacology and Therapeutics</i> , 2006 , 11, 136-41	2.6	10
36	Percutaneous left ventricular support devices. <i>Cardiology Clinics</i> , 2006 , 24, 265-75, vii	2.5	33
35	Comparison of coronary artery bypass surgery with percutaneous coronary intervention with drug-eluting stents for unprotected left main coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 864-70	15.1	284
35 34	drug-eluting stents for unprotected left main coronary artery disease. Journal of the American	15.1 3.2	284 161
	drug-eluting stents for unprotected left main coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. <i>International Journal of</i>		
34	drug-eluting stents for unprotected left main coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. <i>International Journal of Cardiology</i> , 2006 , 111, 231-9 Coronary perforation after percutaneous coronary intervention successfully treated with local	3.2	161
34	drug-eluting stents for unprotected left main coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. <i>International Journal of Cardiology</i> , 2006 , 111, 231-9 Coronary perforation after percutaneous coronary intervention successfully treated with local thrombin injection. <i>Journal of Invasive Cardiology</i> , 2006 , 18, E143-5 Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. <i>Journal</i>	3.2	161
34 33 32	drug-eluting stents for unprotected left main coronary artery disease. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. <i>International Journal of Cardiology</i> , 2006 , 111, 231-9 Coronary perforation after percutaneous coronary intervention successfully treated with local thrombin injection. <i>Journal of Invasive Cardiology</i> , 2006 , 18, E143-5 Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. <i>Journal of Cardiovascular Pharmacology and Therapeutics</i> , 2005 , 10, 225-33 Percutaneous left ventricular assist device: "TandemHeart" for high-risk coronary intervention.	3.2 0.7 2.6	161 8 92
34 33 32 31	drug-eluting stents for unprotected left main coronary artery disease. Journal of the American College of Cardiology, 2006, 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 2006, 111, 231-9 Coronary perforation after percutaneous coronary intervention successfully treated with local thrombin injection. Journal of Invasive Cardiology, 2006, 18, E143-5 Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10, 225-33 Percutaneous left ventricular assist device: "TandemHeart" for high-risk coronary intervention. Catheterization and Cardiovascular Interventions, 2005, 65, 346-52 Drug-eluting stenting is superior to bare metal stenting in saphenous vein grafts. Catheterization	3.2 0.7 2.6	161 8 92 71
34 33 32 31 30	drug-eluting stents for unprotected left main coronary artery disease. Journal of the American College of Cardiology, 2006, 47, 864-70 Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 2006, 111, 231-9 Coronary perforation after percutaneous coronary intervention successfully treated with local thrombin injection. Journal of Invasive Cardiology, 2006, 18, E143-5 Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology and Therapeutics, 2005, 10, 225-33 Percutaneous left ventricular assist device: "TandemHeart" for high-risk coronary intervention. Catheterization and Cardiovascular Interventions, 2005, 65, 346-52 Drug-eluting stenting is superior to bare metal stenting in saphenous vein grafts. Catheterization and Cardiovascular Interventions, 2005, 66, 507-11 Pre-procedural administration of aminophylline does not prevent Angio Jet rheolytic	3.2 0.7 2.6 2.7	161 8 92 71 76

26	Percutaneous stent-mounted valve for treatment of aortic or pulmonary valve disease. <i>Catheterization and Cardiovascular Interventions</i> , 2004 , 63, 89-93	2.7	36
25	Intracoronary beta-irradiation enhances balloon-injury-induced tissue factor expression in the porcine injury model. <i>International Journal of Cardiovascular Interventions</i> , 2004 , 6, 20-7		4
24	Partial restoration of myocardial function and perfusion by cell therapy following myocardial infarction. <i>Current Opinion in Cardiology</i> , 2004 , 19, 631-7	2.1	6
23	Stem-cell transplantation in myocardial infarction: a status report. <i>Annals of Internal Medicine</i> , 2004 , 140, 729-37	8	72
22	Treatment of coronary aneurysm in acute myocardial infarction with AngioJet thrombectomy and JoStent coronary stent graft. <i>Journal of Invasive Cardiology</i> , 2004 , 16, 294-6	0.7	6
21	Influence of angiographic collateral circulation on myocardial perfusion in patients with chronic total occlusion of a single coronary artery and no prior myocardial infarction. <i>Journal of Nuclear Medicine</i> , 2004 , 45, 950-5	8.9	39
20	Stem cell transplantation in myocardial infarction. Reviews in Cardiovascular Medicine, 2004, 5, 82-98	3.9	36
19	Hybrid revascularization using percutaneous coronary intervention and robotically assisted minimally invasive direct coronary artery bypass surgery. <i>Journal of Invasive Cardiology</i> , 2004 , 16, 419-2	.5 ^{0.7}	23
18	Local drug delivery via a coronary stent with programmable release pharmacokinetics. <i>Circulation</i> , 2003 , 107, 777-84	16.7	152
17	Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. <i>Journal of Cardiovascular Electrophysiology</i> , 2003 , 14, 841-8	2.7	103
16	A prospective, nonrandomized, open-labeled pilot study investigating the use of magnesium in patients undergoing nonacute percutaneous coronary intervention with stent implantation. <i>Journal of Cardiovascular Pharmacology and Therapeutics</i> , 2003 , 8, 193-200	2.6	12
15	Stem cell repair of infarcted myocardium: an overview for clinicians. <i>Circulation</i> , 2003 , 108, 1139-45	16.7	127
14	Frequency of incomplete reperfusion in patients with acute myocardial infarction undergoing primary angioplasty. <i>American Journal of Cardiology</i> , 2002 , 90, 316-8	3	2
13	Increased expression of macrophage colony-stimulating factor after coronary artery balloon injury is inhibited by intracoronary brachytherapy. <i>Circulation</i> , 2002 , 105, 2411-5	16.7	11
12	Effects of beta(-)-emitting (188)Re balloon in stented porcine coronary arteries: an angiographic, intravascular ultrasound, and histomorphometric study. <i>Circulation</i> , 2000 , 102, 3117-23	16.7	22
11	Chimeric DNA-RNA hammerhead ribozyme to proliferating cell nuclear antigen reduces stent-induced stenosis in a porcine coronary model. <i>Circulation</i> , 1999 , 99, 697-703	16.7	50
10	Effects of a positron-emitting vanadium-48 nitinol stent on experimental restenosis in porcine coronary arteries: an injury-response study. <i>Cardiovascular Radiation Medicine</i> , 1999 , 1, 239-51		7
9	Effect of glycoprotein IIb/IIIa inhibition without thrombolytic therapy on reperfusion in acute myocardial infarction: results of ReoMI pilot study. <i>Catheterization and Cardiovascular Interventions</i> , 1999 , 48, 430-4	2.7	10

8	Glycoprotein IIb/IIIa receptor antagonists: clinical pharmacology in cardiovascular diseases of aging. <i>Drugs and Aging</i> , 1999 , 15, 207-18	4.7	1
7	Long-term follow-up of a high risk cohort after stent implantation in saphenous vein grafts. <i>Journal of the American College of Cardiology</i> , 1997 , 30, 1277-83	15.1	29
6	Effects of GP IIb/IIIa receptor monoclonal antibody (7E3), heparin, and aspirin in an ex vivo canine arteriovenous shunt model of stent thrombosis. <i>Circulation</i> , 1997 , 95, 1015-21	16.7	26
5	Prevention of Restenosis by Local Drug Delivery. <i>Journal of Cardiovascular Pharmacology and Therapeutics</i> , 1996 , 1, 177-188	2.6	1
4	Inhibition of acute stent thrombosis under high-shear flow conditions by a nitric oxide donor, DMHD/NO. An ex vivo porcine arteriovenous shunt study. <i>Circulation</i> , 1996 , 94, 2228-34	16.7	16
3	Effects of thermal exposure on binding of heparin in vitro to the arterial wall and to clot and on the chronic angiographic luminal response to local application of a heparin film during angioplasty in an in vivo rabbit model. <i>Lasers in Surgery and Medicine</i> , 1994 , 14, 329-46	3.6	6
2	Left-sided Femoral Venous Access for Tricuspid Clip Procedure. Structural Heart,1-3	0.6	
1	Intracoronary vs Intravenous Glycoprotein IIb/IIIa Inhibitor Use140-144		