Michael A Ellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5560532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 2016, 351, aad2622.	12.6	1,543
2	When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 2015, 383, 196-203.	1.5	546
3	The Anthropocene: a new epoch of geological time?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 835-841.	3.4	395
4	Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 2007, 26, .	2.8	340
5	Structural features in a brittle–ductile wax model of continental extension. Nature, 1997, 387, 67-70.	27.8	324
6	Space Geodetic Observations of Nazca-South America Convergence Across the Central Andes. Science, 1998, 279, 358-362.	12.6	235
7	Landsliding and the evolution of normal-fault-bounded mountains. Journal of Geophysical Research, 1998, 103, 15203-15219.	3.3	214
8	Extraordinary denudation in the Sichuan Basin: Insights from lowâ€ŧemperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research, 2008, 113, .	3.3	200
9	The generation and degradation of marine terraces. Basin Research, 1999, 11, 7-19.	2.7	154
10	The origin of large local uplift in extensional regions. Nature, 1990, 348, 689-693.	27.8	137
11	A stratigraphical basis for the Anthropocene?. Geological Society Special Publication, 2014, 395, 1-21.	1.3	130
12	Hillslope Evolution by Bedrock Landslides. Science, 1997, 275, 369-372.	12.6	112
13	Displacement variation along thrust faults: implications for the development of large faults. Journal of Structural Geology, 1988, 10, 183-192.	2.3	111
14	Development of mountainous topography in the Basin Ranges, USA. Basin Research, 1999, 11, 21-41.	2.7	105
15	Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary element program. Journal of Geophysical Research, 1994, 99, 20299-20310.	3.3	99
16	Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs. Earth's Future, 2015, 3, 220-251.	6.3	98
17	Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13336-13341.	7.1	90
18	Orogen-parallel extension and oblique tectonics: The relation between stretching lineations and relative plate motions. Geology, 1987, 15, 1022.	4.4	80

MICHAEL A ELLIS

#	Article	IF	CITATIONS
19	An evolving research agenda for human–coastal systems. Geomorphology, 2016, 256, 81-90.	2.6	75
20	Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth and Planetary Science Letters, 2012, 353-354, 108-120.	4.4	74
21	The Anthropocene: a conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere. Earth's Future, 2016, 4, 34-53.	6.3	66
22	Space geodetic evidence for rapid strain rates in the New Madrid seismic zone of central USA. Nature, 2005, 435, 1088-1090.	27.8	58
23	Fault interaction may generate multiple slip vectors on a single fault surface. Geology, 1994, 22, 1123.	4.4	57
24	A topographic fingerprint to distinguish alluvial fan formative processes. Geomorphology, 2007, 88, 34-45.	2.6	52
25	Rightâ€lateral displacements and the Holocene slip rate associated with prehistoric earthquakes along the Southern Panamint Valley Fault Zone: Implications for southern Basin and Range tectonics and Coastal California deformation. Journal of Geophysical Research, 1990, 95, 4857-4872.	3.3	51
26	The determination of progressive deformation histories from antitaxial syntectonic crystal fibres. Journal of Structural Geology, 1986, 8, 701-709.	2.3	50
27	Exploring the sensitivities of crenulate bay shorelines to wave climates using a new vector-based one-line model. Journal of Geophysical Research F: Earth Surface, 2015, 120, 2586-2608.	2.8	50
28	Introduction to Special Section on Tectonics and Topography. Journal of Geophysical Research, 1994, 99, 12135-12141.	3.3	44
29	Palaeoclimatic implications of high-resolution clay mineral assemblages preceding and across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin. Clay Minerals, 2016, 51, 793-813.	0.6	40
30	Tectonic geomorphology of the southeastern Mississippi Embayment in northern Mississippi, USA. Bulletin of the Geological Society of America, 2006, 118, 1160-1170.	3.3	36
31	Aeolian sediment reconstructions from the Scottish Outer Hebrides: Late Holocene storminess and the role of the North Atlantic Oscillation. Quaternary Science Reviews, 2016, 132, 15-25.	3.0	34
32	Controls on the magnitude-frequency scaling of an inventory of secular landslides. Earth Surface Dynamics, 2013, 1, 67-78.	2.4	32
33	Which Anthropocene is it to be? Beyond geology to a moral and public discourse. Earth's Future, 2014, 2, 122-125.	6.3	32
34	Past changes in the North Atlantic storm track driven by insolation and sea-ice forcing. Geology, 2017, 45, 335-338.	4.4	30
35	The effectiveness of beach mega-nourishment, assessed over three management epochs. Journal of Environmental Management, 2016, 184, 400-408.	7.8	29
36	Unusual morphologies and the occurrence of pseudomorphs after ikaite (CaCO ₃ ·6H ₂ O) in fast growing, hyperalkaline speleothems. Mineralogical Magazine, 2017, 81, 565-589.	1.4	29

MICHAEL A ELLIS

#	Article	IF	CITATIONS
37	The chronostratigraphic method is unsuitable for determining the start of the Anthropocene. Progress in Physical Geography, 2019, 43, 334-344.	3.2	29
38	Lithospheric Strength in Compression: Initiation of Subduction, Flake Tectonics, Foreland Migration of Thrusting, and an Origin of Displaced Terranes. Journal of Geology, 1988, 96, 91-100.	1.4	29
39	The emergence of topographic steady state in a perpetually dynamic selfâ€organized critical landscape. Water Resources Research, 2015, 51, 4986-5003.	4.2	26
40	Constraints on present-day shortening rate across the central eastern Andes from GPS data. Geophysical Research Letters, 1997, 24, 1031-1034.	4.0	25
41	The Role of Late Quaternary Upper-Crustal Faults in the 12 May 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2700-2712.	2.3	25
42	Controls on the distribution of cosmogenic ¹⁰ Be across shore platforms. Earth Surface Dynamics, 2017, 5, 67-84.	2.4	21
43	Oblique subduction, footwall deformation, and imbrication: A model for the Penokean orogeny in east-central Minnesota. Bulletin of the Geological Society of America, 1988, 100, 1811-1818.	3.3	20
44	iCOASST – INTEGRATING COASTAL SEDIMENT SYSTEMS. Coastal Engineering Proceedings, 2012, 1, 100.	0.1	20
45	First-order topography over blind thrusts. , 2006, , .		17
46	Coastal Modelling Environment version 1.0: aÂframework for integrating landform-specific component models in order to simulate decadal to centennial morphological changes on complex coasts. Geoscientific Model Development, 2017, 10, 2715-2740.	3.6	17
47	Coastal vulnerability of a pinned, soft-cliff coastline – Part I: Assessing the natural sensitivity to wave climate. Earth Surface Dynamics, 2014, 2, 295-308.	2.4	16
48	Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0). Geoscientific Model Development, 2018, 11, 4317-4337.	3.6	16
49	Structural morphology and associated strain in the central Cordillera (British Columbia and) Tj ETQq1 1 0.78431	4 rgBT /O\ 4.4	verlock 10 Tf 15
50	Indian earthquake may serve as analog for New Madrid earthquakes. Eos, 2001, 82, 345-350.	0.1	15
51	Complex coastlines responding to climate change:Âdo shoreline shapes reflect present forcing or "remember―the distant past?. Earth Surface Dynamics, 2016, 4, 871-884.	2.4	15
52	Earthquake rate analysis. Tectonophysics, 1993, 218, 1-21.	2.2	14
53	Simulating the influences of groundwater on regional geomorphology using a distributed, dynamic, landscape evolution modelling platform. Environmental Modelling and Software, 2015, 74, 1-20.	4.5	13
54	Review of tufa deposition and palaeohydrological conditions in the White Peak, Derbyshire, UK: implications for Quaternary landscape evolution. Proceedings of the Geologists Association, 2012, 123, 117-129.	1.1	12

MICHAEL A ELLIS

#	Article	IF	CITATIONS
55	Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf. Die Naturwissenschaften, 2013, 100, 699-722.	1.6	12
56	A Quantitative Assessment of the Annual Contribution of Platform Downwearing to Beach Sediment Budget: Happisburgh, England, UK. Journal of Marine Science and Engineering, 2018, 6, 113.	2.6	12
57	A Method to Extract Measurable Indicators of Coastal Cliff Erosion from Topographical Cliff and Beach Profiles: Application to North Norfolk and Suffolk, East England, UK. Journal of Marine Science and Engineering, 2020, 8, 20.	2.6	11
58	The spatial variation of weathering and soil depth across a Triassic sandstone outcrop. Earth Surface Processes and Landforms, 2011, 36, 569-581.	2.5	10
59	Coastal vulnerability of a pinned, soft-cliff coastline, II: assessing the influence of sea walls on future morphology. Earth Surface Dynamics, 2014, 2, 233-242.	2.4	10
60	Earthquake triggering and delaying caused by fault interaction on Xianshuihe fault belt, southwestern China. Acta Seismologica Sinica, 2003, 16, 156-165.	0.2	9
61	Investigating the maximum resolution of µXRF core scanners: A 1800 year storminess reconstruction from the Outer Hebrides, Scotland, UK. Holocene, 2016, 26, 235-247.	1.7	8
62	Communicating Simulation Outputs of Mesoscale Coastal Evolution to Specialist and Non-Specialist Audiences. Journal of Marine Science and Engineering, 2020, 8, 235.	2.6	6
63	Seismology: Tectonic strain in plate interiors? (Reply). Nature, 2005, 438, E10-E10.	27.8	5
64	Spatio-temporal Variability in the Tipping Points of a Coastal Defense. Journal of Coastal Research, 2016, 75, 1042-1046.	0.3	5
65	Comments and Reply on "Orogen-parallel extension and oblique tectonics: The relation between stretching lineations and relative plate motions". Geology, 1988, 16, 857.	4.4	3
66	Space Geodesy and the New Madrid Seismic Zone. Eos, 2008, 89, 256-256.	0.1	2
67	Reply to comment by Rob Westaway on "Review of tufa deposition and palaeohydrological conditions in the White Peak, Derbyshire, UK: implications for Quaternary landscape evolution.― Proceedings of the Geologists Association, 2012, 123, 789-790.	1.1	2
68	Initial paleohydrological observations from the Paleocene-Eocene boundary at Esplugafreda and Berganuy in northern Spain. Rendiconti Online Societa Geologica Italiana, 0, 31, 54-55.	0.3	1
69	The generation of soil over sandstones in a periglacial environment. Applied Geochemistry, 2011, 26, S139-S141.	3.0	0
70	Thank you to 2015 reviewers of Earth's Future. Earth's Future, 2016, 4, 92-93.	6.3	0