Ayumu Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556033/publications.pdf

Version: 2024-02-01

2258059 2272923 14 36 3 4 citations h-index g-index papers 14 14 14 3 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Fuel Regression Characteristics of Axial-Injection End-Burning Hybrid Rocket Using Nitrous Oxide. Journal of Propulsion and Power, 2022, 38, 759-770.	2.2	6
2	Stabilized combustion of circular fuel duct with liquid oxygen. Proceedings of the Combustion Institute, 2021, 38, 4845-4855.	3.9	O
3	Experimental and Numerical Investigation of Throttling Response Mechanisms in Axial-Injection End-Burning Hybrid Rockets. , 2021, , .		O
4	Reconstruction techniques for determining $\langle i \rangle O/F \langle i \rangle$ in hybrid rockets., 2021, , .		2
5	Influence of Port Manufacturing Accuracy on Backfiring in Axial-Injection End-Burning Hybrid Rocket., 2021,,.		O
6	Initial Firing Tests of Aluminum Rod/Water Hybrid Rockets. , 2020, , .		0
7	Fuel Regression Characteristics of Axial-Injection End-Burning Hybrid Rocket Using Nitrous Oxide. , 2020, , .		2
8	Visualization of Fuel Regression Rate in Axial-Injection End-Burning Hybrid Rocket. , 2020, , .		2
9	Simulation of Throttling Response in Axial-Injection End-Burning Hybrid Rocket. The Proceedings of Mechanical Engineering Congress Japan, 2020, 2020, J19109.	0.0	O
10	Response Mechanisms in Axial-Injection End-Burning Hybrid Rockets., 2019,,.		1
11	High Pressure Fuel Regression Characteristics of Axial-Injection End-Burning Hybrid Rockets. Journal of Propulsion and Power, 2019, 35, 328-341.	2.2	17
12	Study on Hysteresis Characteristics of Axial-injection End-burning Hybrid Rockets under Throttling Operation. Journal of the Japan Society for Aeronautical and Space Sciences, 2019, 67, 119-125.	0.1	O
13	Investigation of Throttling Response Characteristics of Axial-Injection End-Burning Hybrid Rockets. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2018, 16, 9-18.	0.2	4
14	Investigation of the Throttling Characteristics of Axial-injection End-burning Hybrid Rockets. Journal of the Japan Society for Aeronautical and Space Sciences, 2017, 65, 157-167.	0.1	2