Spencer P Pitre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insights and Kinetic Analysis for the Oxidative Hydroxylation of Arylboronic Acids by Visible Light Photoredox Catalysis: A Metal-Free Alternative. Journal of the American Chemical Society, 2013, 135, 13286-13289.	13.7	241
2	Metal-Free Photocatalytic Radical Trifluoromethylation Utilizing Methylene Blue and Visible Light Irradiation. ACS Catalysis, 2014, 4, 2530-2535.	11.2	207
3	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	47.7	199
4	Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Accounts of Chemical Research, 2016, 49, 1320-1330.	15.6	172
5	Forging C(sp ³)–C(sp ³) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. Journal of the American Chemical Society, 2019, 141, 2800-2813.	13.7	111
6	Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chemical Communications, 2017, 53, 4335-4338.	4.1	88
7	Visible-Light Actinometry and Intermittent Illumination as Convenient Tools to Study Ru(bpy)3Cl2 Mediated Photoredox Transformations. Scientific Reports, 2015, 5, 16397.	3.3	86
8	Library of Cationic Organic Dyes for Visible-Light-Driven Photoredox Transformations. ACS Omega, 2016, 1, 66-76.	3.5	86
9	The photochemical alkylation and reduction of heteroarenes. Chemical Science, 2017, 8, 7412-7418.	7.4	77
10	Tertiary Alcohols as Radical Precursors for the Introduction of Tertiary Substituents into Heteroarenes. ACS Catalysis, 2019, 9, 3413-3418.	11.2	72
11	Photocatalytic Indole Diels–Alder Cycloadditions Mediated by Heterogeneous Platinum-Modified Titanium Dioxide. ACS Catalysis, 2017, 7, 6440-6444.	11.2	50
12	Photocatalytic Dehalogenation of Vicinal Dibromo Compounds Utilizing Sexithiophene and Visible-Light Irradiation. ACS Catalysis, 2014, 4, 4034-4039.	11.2	47
13	Active participation of amine-derived radicals in photoredox catalysis as exemplified by a reductive cyclization. Catalysis Science and Technology, 2013, 3, 935.	4.1	38
14	Heterogeneous Lightâ€Mediated Reductive Dehalogenations and Cyclizations Utilizing Platinum Nanoparticles on Titania (PtNP@TiO ₂). Advanced Synthesis and Catalysis, 2014, 356, 2819-2824.	4.3	35
15	Photodynamic performance of zinc phthalocyanine in HeLa cells: A comparison between DPCC liposomes and BSA as delivery systems. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 385-390.	3.8	34
16	Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes. Organic Letters, 2021, 23, 1103-1106.	4.6	34
17	Radical Perfluoroalkylation Enabled by a Catalytically Generated Halogen Bonding Complex and Visible Light Irradiation. Organic Letters, 2022, 24, 446-450.	4.6	27
18	Photouncaging of Ceramides Promotes Reorganization of Liquid-Ordered Domains in Supported Lipid Bilayers. Langmuir, 2013, 29, 3380-3387.	3.5	11

#	Article	IF	CITATIONS
19	Structure–Binding Effects: Comparative Binding of 2-Anilino-6-naphthalenesulfonate by a Series of Alkyl- and Hydroxyalkyl-Substituted β-Cyclodextrins. Journal of Physical Chemistry B, 2015, 119, 12921-12930.	2.6	8

20 Radical coupling decreases synthetic burden. Science, 2022, 375, 1234-1234.

12.6 0