Cristina Martinez-Fernandez de la Cama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5560166/publications.pdf

Version: 2024-02-01

42 papers 2,575 citations

³⁶¹⁴¹³
20
h-index

289244 40 g-index

42 all docs 42 docs citations

times ranked

42

3091 citing authors

#	Article	IF	CITATIONS
1	Retinal gene therapy in patients with choroideremia: initial findings from a phase $1/2$ clinical trial. Lancet, The, 2014, 383, 1129-1137.	13.7	689
2	Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. American Journal of Human Genetics, 2017, 100, 75-90.	6.2	343
3	Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nature Medicine, 2020, 26, 354-359.	30.7	208
4	Visual Acuity after Retinal Gene Therapy for Choroideremia. New England Journal of Medicine, 2016, 374, 1996-1998.	27.0	185
5	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020, 21, 6240.	4.1	179
6	Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nature Medicine, 2018, 24, 1507-1512.	30.7	140
7	Codon-Optimized RPGR Improves Stability and Efficacy of AAV8 Gene Therapy in Two Mouse Models of X-Linked Retinitis Pigmentosa. Molecular Therapy, 2017, 25, 1854-1865.	8.2	86
8	Functional expression of Rab escort protein 1 following AAV2-mediated gene delivery in the retina of choroideremia mice and human cells ex vivo. Journal of Molecular Medicine, 2013, 91, 825-837.	3.9	81
9	Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa. PLoS ONE, 2013, 8, e74223.	2.5	64
10	Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration. Scientific Reports, 2015, 5, 11764.	3.3	48
11	Adeno-associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. Yale Journal of Biology and Medicine, 2017, 90, 611-623.	0.2	47
12	Recent advances and future prospects in choroideremia. Clinical Ophthalmology, 2015, 9, 2195.	1.8	40
13	Gene therapy for the treatment of X-linked retinitis pigmentosa. Expert Opinion on Orphan Drugs, 2018, 6, 167-177.	0.8	35
14	Molecular Strategies for RPGR Gene Therapy. Genes, 2019, 10, 674.	2.4	31
15	Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opinion on Biological Therapy, 2018, 18, 807-820.	3.1	28
16	HIFâ€1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. FASEB Journal, 2018, 32, 2438-2451.	0.5	27
17	Therapy Approaches for Stargardt Disease. Biomolecules, 2021, 11, 1179.	4.0	26
18	Enhancement of Adeno-Associated Virus-Mediated Gene Therapy Using Hydroxychloroquine in Murine and Human Tissues. Molecular Therapy - Methods and Clinical Development, 2019, 14, 77-89.	4.1	25

#	Article	IF	Citations
19	Phosphodiesterase inhibition induces retinal degeneration, oxidative stress and inflammation in cone-enriched cultures of porcine retina. Experimental Eye Research, 2013, 111, 122-133.	2.6	24
20	Immunomodulatory Effects of Hydroxychloroquine and Chloroquine in Viral Infections and Their Potential Application in Retinal Gene Therapy. International Journal of Molecular Sciences, 2020, 21, 4972.	4.1	24
21	CRISPR Interference–Potential Application in Retinal Disease. International Journal of Molecular Sciences, 2020, 21, 2329.	4.1	22
22	Study of USH1 Splicing Variants through Minigenes and Transcript Analysis from Nasal Epithelial Cells. PLoS ONE, 2013, 8, e57506.	2.5	21
23	Impact of Vital Dyes on Cell Viability and Transduction Efficiency of AAV Vectors Used in Retinal Gene Therapy Surgery: An In Vitro and In Vivo Analysis. Translational Vision Science and Technology, 2017, 6, 4.	2.2	20
24	Infliximab reduces Zaprinast-induced retinal degeneration in cultures of porcine retina. Journal of Neuroinflammation, 2014, 11, 172.	7.2	19
25	Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nature Communications, 2021, 12, 4934.	12.8	18
26	Expression profiling of murine intestinal adenomas reveals early deregulation of multiplematrix metalloproteinase(Mmp) genes. Journal of Pathology, 2005, 206, 100-110.	4. 5	16
27	Characterizing the cellular immune response to subretinal AAV gene therapy in the murine retina. Molecular Therapy - Methods and Clinical Development, 2021, 22, 52-65.	4.1	16
28	cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants. PLoS ONE, 2016, 11, e0166717.	2.5	16
29	Filtration of Short-Wavelength Light Provides Therapeutic Benefit in Retinitis Pigmentosa Caused by a Common Rhodopsin Mutation. , 2019, 60, 2733.		15
30	Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Human Gene Therapy, 2020, 31, 730-742.	2.7	13
31	Inclusion of PF68 Surfactant Improves Stability of rAAV Titer when Passed through a Surgical Device Used in Retinal Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 17, 99-106.	4.1	12
32	Accurate Quantification of AAV Vector Genomes by Quantitative PCR. Genes, 2021, 12, 601.	2.4	10
33	Outcome of Full-Thickness Macular Hole Surgery in Choroideremia. Genes, 2017, 8, 187.	2.4	8
34	RPGR gene therapy presents challenges in cloning the coding sequence. Expert Opinion on Biological Therapy, 2020, 20, 63-71.	3.1	8
35	CRISPR Systems Suitable for Single AAV Vector Delivery. Current Gene Therapy, 2021, 22, 1-14.	2.0	8
36	Gene Therapy for Retinal Disease: What Lies Ahead. Ophthalmologica, 2015, 234, 1-5.	1.9	7

#	Article	IF	CITATIONS
37	A Quantitative Chloride Channel Conductance Assay for Efficacy Testing of AAV.BEST1. Human Gene Therapy Methods, 2019, 30, 44-52.	2.1	4
38	In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes, 2021, 12, 1908.	2.4	4
39	Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Experimental Eye Research, 2020, 190, 107895.	2.6	3
40	Analysis of Early Cone Dysfunction in an In Vivo Model of Rod-Cone Dystrophy. International Journal of Molecular Sciences, 2020, 21, 6055.	4.1	3
41	Novel non-sense mutation in RP2 (c.843_844insT/p.Arg282fs) is associated with a severe phenotype of retinitis pigmentosa without evidence of primary retinal pigment epithelium involvement. BMJ Case Reports, 2019, 12, e224451.	0.5	2
42	Re: Song <i>et al.</i> , Toxicology and Pharmacology of an AAV Vector Expressing Codon-Optimized RPGR in RPGR-Deficient Rd9 Mice. Hum Gene Ther Clin Dev 2018; 29(4):188–197. Human Gene Therapy Clinical Development, 2019, 30, 40-40.	3.1	0