List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5560163/publications.pdf Version: 2024-02-01

MIHAELA FLODEA

#	Article	IF	CITATIONS
1	Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 2014, 5, 5291.	12.8	208
2	Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC. Applied Catalysis B: Environmental, 2007, 70, 400-405.	20.2	149
3	Supported perovskites for total oxidation of toluene. Applied Catalysis B: Environmental, 2005, 60, 33-39.	20.2	115
4	Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Applied Catalysis B: Environmental, 2016, 180, 751-757.	20.2	112
5	Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides—Evidences of the nature of the active site and catalytic performances. Journal of Catalysis, 2009, 263, 56-66.	6.2	106
6	Total oxidation of toluene on ferrite-type catalysts. Catalysis Today, 2009, 141, 361-366.	4.4	88
7	Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 2007, 76, 275-281.	20.2	70
8	Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran in aqueous media over heterogeneous manganese based catalysts. Catalysis Today, 2016, 278, 66-73.	4.4	63
9	Graphene from Alginate Pyrolysis as a Metalâ€Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 2016, 9, 1565-1569.	6.8	62
10	Applications of MAX phases and MXenes as catalysts. Journal of Materials Chemistry A, 2021, 9, 19589-19612.	10.3	59
11	The impact of the "memory effect―on the catalytic activity of Mg/Al; Mg,Zn/Al; Mg/Al,Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation. Applied Catalysis A: General, 2008, 341, 50-57.	4.3	56
12	Recent progress in electrocatalysts and electrodes for portable fuel cells. Journal of Materials Chemistry A, 2021, 9, 17065-17128.	10.3	55
13	Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production. Journal of Cleaner Production, 2019, 214, 606-614.	9.3	54
14	Supported Co-based perovskites as catalysts for total oxidation of methane. Applied Catalysis A: General, 2005, 280, 255-265.	4.3	51
15	Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO ₂ Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies. Journal of Physical Chemistry C, 2015, 119, 16303-16313.	3.1	50
16	Dry reforming of methane on ceria prepared by modified precipitation route. Applied Catalysis A: General, 2015, 494, 29-40.	4.3	47
17	Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. Applied Catalysis A: General, 2015, 504, 81-91.	4.3	46
18	Evidence for the participation of lattice nitrogen from vanadium aluminum oxynitrides in propane ammoxidation. Journal of Catalysis, 2005, 232, 152-160.	6.2	42

#	Article	IF	CITATIONS
19	Metal-triflate ionic liquid systems immobilized onto mesoporous MS41 materials as new and efficient catalysts for N-acylation. Journal of Catalysis, 2007, 249, 359-369.	6.2	41
20	Synthesis of Terephthalic Acid by p ymene Oxidation using Oxygen: Toward a More Sustainable Production of Bioâ€Polyethylene Terephthalate. ChemSusChem, 2016, 9, 3102-3112.	6.8	40
21	Synthesis of ceria nanopowders by microwave-assisted hydrothermal method for dry reforming of methane. International Journal of Hydrogen Energy, 2016, 41, 2512-2525.	7.1	39
22	Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 2011, 393, 206-214.	4.3	37
23	New Class of Catalysts for the Propane Ammoxidation Process Based on Vanadium Aluminum Oxynitrides. Catalysis Letters, 2003, 87, 63-66.	2.6	29
24	Influence of the co-precipitation pH on the physico-chemical and catalytic properties of vanadium aluminum oxide catalyst. Applied Catalysis A: General, 2004, 263, 163-170.	4.3	29
25	Local environment of vanadium in V/Al/O-mixed oxide catalyst for propane ammoxidation: Characterization by in situ valence-to-core X-ray emission spectroscopy and X-ray absorption spectroscopy. Journal of Catalysis, 2009, 268, 156-164.	6.2	29
26	Epoxidation of cyclohexene with O2 and isobutyraldehyde catalysed by cobalt modified hydrotalcites. Journal of Molecular Catalysis A, 2010, 315, 178-186.	4.8	29
27	Effect of LaCoO3 perovskite deposition on ceria-based supports on total oxidation of VOC. Catalysis Today, 2006, 112, 169-173.	4.4	28
28	Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments. Journal of Materials Science, 2014, 49, 2117-2126.	3.7	28
29	Mesostructured vanadia–alumina catalysts for the synthesis of vitamin K3. Catalysis Today, 2015, 254, 29-35.	4.4	27
30	Sensors based on mesoporous SnO 2 -CuWO 4 with high selective sensitivity to H 2 S at low operating temperature. Journal of Hazardous Materials, 2017, 331, 150-160.	12.4	27
31	Highly Efficient Ultralow Pd Loading Supported on MAX Phases for Chemoselective Hydrogenation. ACS Catalysis, 2020, 10, 5899-5908.	11.2	27
32	Advances in luminescence of lanthanide doped Y_2O_3: case of S_6 sites. Optical Materials Express, 2016, 6, 1635.	3.0	26
33	Down-/Up-Conversion Emission Enhancement by Li Addition: Improved Crystallization or Local Structure Distortion?. Journal of Physical Chemistry C, 2017, 121, 14274-14284.	3.1	26
34	Bimodal mesoporous NiO/CeO2-δ-YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane—Potential IT-SOFCs anode. Applied Catalysis B: Environmental, 2019, 241, 393-406.	20.2	26
35	An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene. Catalysis Science and Technology, 2016, 6, 8344-8354.	4.1	24
36	Structural Details of BaTiO3 Nano-Powders Deduced from the Anisotropic XRD Peak Broadening. Nanomaterials, 2021, 11, 1121.	4.1	24

#	Article	IF	CITATIONS
37	Novel Pd heterogeneous catalysts for cycloisomerisation of acetylenic carboxylic acids. Green Chemistry, 2010, 12, 2145.	9.0	23
38	Hydrogen production from glycerol steam reforming over molybdena–alumina catalysts. Catalysis Communications, 2016, 77, 83-88.	3.3	23
39	Vanadium aluminium oxynitride catalysts for propane ammoxidation reaction. Applied Catalysis A: General, 2005, 286, 1-10.	4.3	22
40	Postsynthetic Modification of a Metal–Organic Framework (MOF) Structure for Enantioselective Catalytic Epoxidation. ChemPlusChem, 2013, 78, 443-450.	2.8	22
41	Near infrared emission properties of Er doped cubic sesquioxides in the second/third biological windows. Scientific Reports, 2018, 8, 18033.	3.3	22
42	Crown-ether functionalized graphene oxide for metal ions sequestration. Materials Research Bulletin, 2020, 122, 110643.	5.2	22
43	Influence of Gd and Pr doping on the properties of ceria: texture, structure, redox behaviour and reactivity in CH ₄ /H ₂ O reactions in the presence of H ₂ S. Catalysis Science and Technology, 2018, 8, 1333-1348.	4.1	21
44	Evidence of A–B site cooperation in the EuFeO3 perovskite from 151Eu and 57Fe Mössbauer spectroscopy, EXAFS, and toluene catalytic oxidation. Journal of Catalysis, 2014, 316, 130-140.	6.2	20
45	In situ structural changes during toluene complete oxidation on supported EuCoO3 monitored with 151Eu Mössbauer spectroscopy. Catalysis Today, 2006, 117, 329-336.	4.4	19
46	Up-conversion luminescence of Er(Yb)-CeO 2 : Status and new results. Journal of Alloys and Compounds, 2017, 711, 627-636.	5.5	19
47	Reticulated Mesoporous TiO ₂ Scaffold, Fabricated by Spray Coating, for Largeâ€Area Perovskite Solar Cells. Energy Technology, 2020, 8, 1900922.	3.8	19
48	Influence of the reaction conditions on the activity properties of vanadium–aluminium oxynitride propane ammoxidation catalyst. Applied Catalysis A: General, 2003, 255, 289-300.	4.3	18
49	Doped ceria prepared by precipitation route for steam reforming of methane. Catalysis Today, 2018, 306, 166-171.	4.4	18
50	Undoped SnO ₂ as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 18407-18420.	8.0	17
51	Propane ammoxidation catalyst based on vanadium-aluminum oxynitride. AICHE Journal, 2003, 49, 2228-2231.	3.6	16
52	Highly -sensitive near infrared luminescent nanothermometers based on binary mixture. Journal of Alloys and Compounds, 2019, 785, 250-259.	5.5	16
53	A Robust Metal–Organic Framework Constructed from Alkoxo-Bridged Binuclear Nodes and Hexamethylenetetramine Spacers: Crystal Structure and Sorption Studies. Inorganic Chemistry, 2012, 51, 7954-7956.	4.0	15
54	Pure and almost pure NIR emission of Tm and Tm,Yb–CeO ₂ under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation. Physical Chemistry Chemical Physics, 2015, 17, 30988-30992.	2.8	15

#	Article	IF	CITATIONS
55	Defect induced tunable near infrared emission of Er–CeO ₂ by heterovalent co-dopants. Physical Chemistry Chemical Physics, 2016, 18, 18268-18277.	2.8	15
56	Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandin intermediates. Chemical Communications, 1999, , 2175-2176.	4.1	14
57	Ni-doped (CeO2â^îl´)–YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM). Journal of Nanoparticle Research, 2015, 17, 1.	1.9	14
58	Carbon-Coated SiO2 Composites as Promising Anode Material for Li-Ion Batteries. Molecules, 2021, 26, 4531.	3.8	14
59	Acylation of different amino derivatives with fatty acids on UL-MFI-type catalysts. Pure and Applied Chemistry, 2007, 79, 2059-2068.	1.9	13
60	NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl. Optical Materials Express, 2015, 5, 951.	3.0	13
61	The hysteresis-free behavior of perovskite solar cells from the perspective of the measurement conditions. Journal of Materials Chemistry C, 2019, 7, 5267-5274.	5.5	13
62	Potassium-containing triple-cation mixed-halide perovskite materials: Toward efficient and stable solar cells. Journal of Alloys and Compounds, 2021, 858, 158335.	5.5	13
63	Lanthanide–lanthanide and lanthanide–defect interactions in co-doped ceria revealed by luminescence spectroscopy. Journal of Alloys and Compounds, 2014, 616, 535-541.	5.5	12
64	Effect of nitridation on the electronic environment of vanadium in VAlO(N) powder catalysts, used for the ammoxidation of propane. Catalysis Today, 2006, 118, 344-352.	4.4	11
65	Degenerated TiO ₂ Semiconductor Modified with Ni and Zn as Efficient Photocatalysts for the Water Splitting Reaction. ChemCatChem, 2020, 12, 4642-4651.	3.7	11
66	VAIPOs as Efficient Catalysts for Glycerol Conversion to Methanol. Catalysts, 2020, 10, 728.	3.5	10
67	Understanding the role of nitridation in butan-1-ol and butan-2-ol dehydration mechanisms over oxynitrides. Catalysis Today, 2006, 116, 216-225.	4.4	9
68	Time-gated down-/up-conversion emission of Ho–CeO 2 and Ho, Yb–CeO 2 nanoparticles. Journal of Luminescence, 2016, 179, 265-271.	3.1	9
69	Functional layered double hydroxides and their catalytic activity for 1,4-addition of n -octanol to 2-propenonitrile. Applied Clay Science, 2017, 146, 411-422.	5.2	9
70	Selective catalytic oxidation reaction of p -xylene on manganese–iron mixed oxide materials. Comptes Rendus Chimie, 2018, 21, 354-361.	0.5	9
71	Imaging dopant distribution across complete phase transformation by TEM and upconversion emission. Nanoscale, 2019, 11, 16743-16754.	5.6	9
72	Behavior of Molybdenum–Vanadium Mixed Oxides in Selective Oxidation and Disproportionation of Toluene. Materials, 2019, 12, 748.	2.9	9

#	Article	IF	CITATIONS
73	Comparative investigation of structural, EPR, optical and photoluminescence properties of nanostructured LaPO4:Ce/RE/Me and LaPO4:Yb/Er phosphors prepared by co-precipitation method. Journal of Solid State Chemistry, 2021, 301, 122310.	2.9	9
74	Increasing Permittivity and Mechanical Harvesting Response of PVDF-Based Flexible Composites by Using Ag Nanoparticles onto BaTiO3 Nanofillers. Nanomaterials, 2022, 12, 934.	4.1	9
75	Ru-MCM-41 catalysts for diastereoselective hydrogenation. Microporous and Mesoporous Materials, 2001, 44-45, 483-488.	4.4	8
76	Effect of Mo/Ce ratio in Mo–Ce–Al catalysts on the hydrogen production by steam reforming of glycerol. Catalysis Science and Technology, 2016, 6, 7902-7912.	4.1	8
77	Heavy doping of ceria by wet impregnation: a viable alternative to bulk doping approaches. Nanoscale, 2018, 10, 18043-18054.	5.6	8
78	Enhancing stability of hybrid perovskite solar cells by imidazolium incorporation. Solar Energy Materials and Solar Cells, 2021, 227, 111096.	6.2	8
79	High surface area Mo–V–Te–Nb–O catalysts: Preparation, characterization and catalytic behaviour in ammoxidation of propane. Catalysis Today, 2006, 112, 139-142.	4.4	7
80	Exploring porous nanosilica-TEMPO as heterogeneous aerobic oxidation catalyst: the influence of supported gold clusters. Journal of Porous Materials, 2016, 23, 247-254.	2.6	7
81	Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors. Journal of Electronic Materials, 2021, 50, 2137-2147.	2.2	7
82	Design of electrocatalysts with reduced Pt content supported on mesoporous NiWO4 and NiWO4-graphene nanoplatelets composite for oxygen reduction and hydrogen oxidation in acidic medium. International Journal of Hydrogen Energy, 2023, 48, 6317-6335.	7.1	7
83	WO _x â€CeO ₂ and WO _x â€Nb ₂ O ₅ catalysts deactivation during hexane isomerization. AICHE Journal, 2008, 54, 1303-1312.	3.6	6
84	Structural changes during toluene complete oxidation on supported EuFeO3 monitored by in situ 151Eu and 57Fe Mössbauer spectroscopy. Catalysis Today, 2013, 208, 56-59.	4.4	6
85	Thermal behavior of several stable hydrazyl free radicals and of their parent hydrazines. Journal of Thermal Analysis and Calorimetry, 2014, 116, 259-263.	3.6	6
86	Coordination polymers and a dinuclear complex constructed from zinc(II) ions and fluorescein: iodine adsorption and optical properties. Journal of Coordination Chemistry, 2019, 72, 1222-1237.	2.2	6
87	Exploring the effect of aliovalent substitution of Pb ²⁺ by Eu ³⁺ on structural, morphological and optical properties of CH ₃ NH ₃ PbI ₃ perovskite films. Physica Scripta, 2020, 95, 044003.	2.5	6
88	Influence of doping the inorganic cation with Eu or Sb on the properties of perovskite films. Physica Scripta, 2020, 95, 075707.	2.5	6
89	Highly Active Transition Metal-Promoted CuCeMgAlO Mixed Oxide Catalysts Obtained from Multicationic LDH Precursors for the Total Oxidation of Methane. Catalysts, 2020, 10, 613.	3.5	6
90	Comment on "High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation―[Appl. Phys. Lett. 103 , 231104 (2013)]. Applied Physics Letters, 2014, 104, .	3.3	5

#	Article	IF	CITATIONS
91	Potential application of Ni and Co stabilized zirconia as oxygen reduction reaction catalyst. Catalysis Communications, 2017, 93, 37-42.	3.3	5
92	Bulk Versus Surface Modification of Alumina with Mn and Ce Based Oxides for CH4 Catalytic Combustion. Materials, 2019, 12, 1771.	2.9	5
93	The Role of Acidity in Terephthalic Acid Synthesis from Renewable Carbon Source. ChemCatChem, 2020, 12, 6248-6258.	3.7	5
94	CeO2:Mn3O4 Catalytic Micro-Converters Tuned for CH4 Detection Based on Catalytic Combustion under Real Operating Conditions. Materials, 2020, 13, 2196.	2.9	5
95	CuWO4 with CuO and Cu(OH)2 Native Surface Layers for H2S Detection under in-Field Conditions. Materials, 2021, 14, 465.	2.9	5
96	Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation. Energies, 2021, 14, 5431.	3.1	5
97	Structural properties and near-infrared light from Ce3+/Nd3+-co-doped LaPO4 nanophosphors for solar cell applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 4197-4210.	2.2	5
98	The Cu- and Zn-complex-catalyzed methanolysis of the chemical warfare nerve agents soman, sarin, and VX. Comptes Rendus Chimie, 2018, 21, 339-345.	0.5	4
99	Alternative valorization of red mud waste as functional materials with catalytic activity for sulfide oxidation in wastewater. International Journal of Environmental Science and Technology, 2018, 15, 895-908.	3.5	4
100	La _{0.75} Sr _{0.25} XO ₃ (X = Fe, Mn or Cr) with coking tolerance for CH ₄ /H ₂ O reaction: effect of H ₂ S on catalytic performance. Catalysis Science and Technology, 2019, 9, 2351-2366.	4.1	4
101	Green Epoxidation of Olefins with ZnxAl/MgxAl-LDH Compounds: Influence of the Chemical Composition. Catalysts, 2022, 12, 145.	3.5	4
102	New ways to use the red mud waste as raw material for inorganic- organic hybrid hydrogels. International Journal of Mineral Processing, 2017, 169, 111-118.	2.6	2
103	Synthesis and Characterization of Graphite Oxide Derived TiO2-Carbon Composites as Potential Electrocatalyst Supports. Topics in Catalysis, 0, , 1.	2.8	2
104	A green way for pyruvic acid synthesis from biomass-derived L-malic acid on tetrahedral versus octahedral cobalt sites/hematite. Biomass Conversion and Biorefinery, 2024, 14, 813-824.	4.6	2
105	Electrocatalytic Properties of Mixed-Oxide-Containing Composite-Supported Platinum for Polymer Electrolyte Membrane (PEM) Fuel Cells. Materials, 2022, 15, 3671.	2.9	2
106	Epoxidation of cyclohexene on silicalite embedded BiOx clusters. Studies in Surface Science and Catalysis, 2004, 154, 2647-2654.	1.5	1
107	INFLUENCE OF THE PREPARATION METHOD ON THE AMPICILLIN INCORPORATION IN HYDROTALCITE-LIKE COMPOUNDS. , 2008, , .		1
108	Time delay and excitation mode induced tunable red/near-infrared to green emission ratio of Er doped BiOCl. Journal Physics D: Applied Physics, 2015, 48, 355501.	2.8	1

#	Article	IF	CITATIONS
109	Cross-coupling of p-xylene to 2,2′,5,5′-tetramethyl 1,1′-biphenyl on supported vanadia catalysts. Applied Catalysis A: General, 2016, 514, 71-82.	4.3	1
110	Methane Combustion Using Pd Deposited on CeOx-MnOx/La-Al2O3 Pellistors. Materials, 2020, 13, 4888.	2.9	1
111	Preparation of Mo-V-Te-Nb mixed oxides using the template route. Studies in Surface Science and Catalysis, 2006, , 769-776.	1.5	0
112	Self-assembled (Ni/Cu, Ti)-YSZ with potential applications for IT-SOFCs: Catalytic and electrochemical assessment. Journal of Alloys and Compounds, 2017, 690, 873-883.	5.5	0
113	Thermal behaviour of sym-octahydroacridines and their corresponding N(10)-oxides. Journal of Thermal Analysis and Calorimetry, 2018, 131, 117-125.	3.6	0
114	NiO / Sr doped Ce0.85Pr0.10 Er0.05O2-δ mesoarchitectured catalyst for partial oxidation of CH4 and anode fueled by H2. Microporous and Mesoporous Materials, 2021, 323, 111171.	4.4	0