Francesco Masulli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5559904/publications.pdf

Version: 2024-02-01

516710 315739 1,645 79 16 38 citations g-index h-index papers 88 88 88 1472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anomalous sound event detection: A survey of machine learning based methods and applications. Multimedia Tools and Applications, 2022, 81, 5537-5586.	3.9	21
2	A Quantum-Inspired Classifier for Early Web Bot Detection. IEEE Transactions on Information Forensics and Security, 2022, 17, 1684-1697.	6.9	2
3	Efficient on-the-fly Web bot detection. Knowledge-Based Systems, 2021, 223, 107074.	7.1	14
4	Emotion Recognition from Speech: An Unsupervised Learning Approach. International Journal of Computational Intelligence Systems, 2021, 14, 23.	2.7	3
5	Fuzzy Clustering for Exploratory Analysis of EEG Event-Related Potentials. IEEE Transactions on Fuzzy Systems, 2020, 28, 28-38.	9.8	10
6	Bot recognition in a Web store: An approach based on unsupervised learning. Journal of Network and Computer Applications, 2020, 157, 102577.	9.1	29
7	Toward development of PreVoid alerting system for nocturnal enuresis patients: A fuzzy-based approach for determining the level of liquid encased in urinary bladder. Artificial Intelligence in Medicine, 2020, 106, 101819.	6.5	5
8	The "Probabilistic Rand Index― A Look from Some Different Perspectives. Smart Innovation, Systems and Technologies, 2020, , 95-105.	0.6	2
9	Soft Clustering: Why and How-To. Lecture Notes in Computer Science, 2019, , 67-82.	1.3	O
10	Brain Tumor Detection and Classification from Multi-sequence MRI: Study Using ConvNets. Lecture Notes in Computer Science, 2019, , 170-179.	1.3	24
11	Bot or Not? A Case Study on Bot Recognition from Web Session Logs. Smart Innovation, Systems and Technologies, 2019, , 197-206.	0.6	8
12	Clustering of nonstationary data streams: A survey of fuzzy partitional methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1258.	6.8	16
13	Online Web Bot Detection Using a Sequential Classification Approach. , 2018, , .		15
14	Effect of different font sizes and of spaces between words on eye movement performance: An eye tracker study in dyslexic and non-dyslexic children. Vision Research, 2018, 153, 24-29.	1.4	13
15	Unsupervised Analysis of Event-Related Potentials (ERPs) During an Emotional Go/NoGo Task. Lecture Notes in Computer Science, 2017, , 151-161.	1.3	2
16	Tracking Time Evolving Data Streams for Short-Term Traffic Forecasting. Data Science and Engineering, 2017, 2, 210-223.	6.4	12
17	Measuring Clustering Model Complexity. Lecture Notes in Computer Science, 2017, , 434-441.	1.3	2
18	Automatic Approaches for CE-MRI Examination of the Breast: A Survey. , 2017, , .		2

#	Article	IF	CITATIONS
19	Semantic Clustering for Identifying Overlapping Biological Communities. Lecture Notes in Computer Science, 2017, , 235-247.	1.3	0
20	Layered ensemble model for short-term traffic flow forecasting with outlier detection. , 2016, , .		5
21	Comparison of Methods for Community Detection in Networks. Lecture Notes in Computer Science, 2016, , 216-224.	1.3	1
22	Clustering High-Dimensional Data. Lecture Notes in Computer Science, 2015, , 1-13.	1.3	7
23	Online Spectral Clustering and the Neural Mechanisms of Concept Formation. Smart Innovation, Systems and Technologies, 2015, , 61-72.	0.6	1
24	Detecting Overlapping Protein Communities in Disease Networks. Lecture Notes in Computer Science, 2015, , 109-120.	1.3	2
25	Comparing Fuzzy Clusterings in High Dimensionality. Lecture Notes in Computer Science, 2015, , 50-71.	1.3	1
26	Hubs and Communities Identification in Dynamical Financial Networks. Smart Innovation, Systems and Technologies, 2015, , 93-101.	0.6	0
27	Genetic algorithm-based neural error correcting output classifier. , 2014, , .		1
28	Visual stability analysis for model selection in graded possibilistic clustering. Information Sciences, 2014, 279, 37-51.	6.9	7
29	Community Detection in Protein-Protein Interaction Networks Using Spectral and Graph Approaches. Lecture Notes in Computer Science, 2014, , 62-75.	1.3	15
30	Fall Detection Using an Ensemble of Learning Machines. Smart Innovation, Systems and Technologies, 2013, , 81-90.	0.6	3
31	Neighbor-Based Similarities. Lecture Notes in Computer Science, 2013, , 161-170.	1.3	0
32	Advances in Computational Intelligence and Bioinformatics. Soft Computing, 2011, 15, 1457-1458.	3.6	0
33	Simulated annealing for supervised gene selection. Soft Computing, 2011, 15, 1471-1482.	3.6	7
34	Tuning Graded Possibilistic Clustering by Visual Stability Analysis. Lecture Notes in Computer Science, 2011, , 164-171.	1.3	1
35	Applying the Possibilistic c-Means Algorithm in Kernel-Induced Spaces. IEEE Transactions on Fuzzy Systems, 2010, 18, 572-584.	9.8	34
36	A Novel Approach for Biclustering Gene Expression Data Using Modular Singular Value Decomposition. Lecture Notes in Computer Science, 2010, , 254-265.	1.3	7

#	Article	IF	Citations
37	Soft ranking in clustering. Neurocomputing, 2009, 72, 2028-2031.	5.9	O
38	Computational intelligence and machine learning in bioinformatics. Artificial Intelligence in Medicine, 2009, 45, 91-96.	6. 5	17
39	Natural computing methods in bioinformatics: A survey. Information Fusion, 2009, 10, 211-216.	19.1	24
40	Natural Computing Methods in Bioinformatics. Information Fusion, 2009, 10, 210.	19.1	2
41	Searching for microRNA prostate cancer target genes. , 2009, , .		0
42	Clustering in the membership embedding space. International Journal of Knowledge Engineering and Soft Data Paradigms, 2009, $1,363$.	0.0	3
43	Stability and Performances in Biclustering Algorithms. Lecture Notes in Computer Science, 2009, , 91-101.	1.3	6
44	An Experimental Validation of Some Indexes of Fuzzy Clustering Similarity. Lecture Notes in Computer Science, 2009, , 132-139.	1.3	7
45	A survey of kernel and spectral methods for clustering. Pattern Recognition, 2008, 41, 176-190.	8.1	671
46	Linear Fuzzy Clustering With Selection of Variables Using Graded Possibilistic Approach. IEEE Transactions on Fuzzy Systems, 2007, 15, 878-889.	9.8	14
47	Vector quantization and fuzzy ranks for image reconstruction. Image and Vision Computing, 2007, 25, 204-213.	4.5	7
48	Possibilistic Clustering in Feature Space. Lecture Notes in Computer Science, 2007, , 219-226.	1.3	1
49	Membership Embedding Space Approach and Spectral Clustering. , 2007, , 901-908.		0
50	Soft transition from probabilistic to possibilistic fuzzy clustering. IEEE Transactions on Fuzzy Systems, 2006, 14, 516-527.	9.8	81
51	Possibilistic Approach to Biclustering: An Application to Oligonucleotide Microarray Data Analysis. Lecture Notes in Computer Science, 2006, , 312-322.	1.3	18
52	Advances in fuzzy sets and rough sets. International Journal of Approximate Reasoning, 2006, 41, 75-76.	3.3	10
53	Possibilistic clustering approach to trackless ring Pattern Recognition in RICH counters. International Journal of Approximate Reasoning, 2006, 41, 96-109.	3.3	5
54	Shared farthest neighbor approach to clustering of high dimensionality, low cardinality data. Pattern Recognition, 2006, 39, 2415-2425.	8.1	14

#	Article	IF	Citations
55	Unsupervised Gene Selection and Clustering Using Simulated Annealing. Lecture Notes in Computer Science, 2006, , 229-235.	1.3	7
56	A fuzzy approach to image analysis in HLA typing using oligonucleotide microarrays. Fuzzy Sets and Systems, 2005, 152, 37-48.	2.7	2
57	An experimental analysis of the dependence among codeword bit errors in ECOC learning machines. Neurocomputing, 2004, 57, 189-214.	5.9	16
58	Random Voronoi ensembles for gene selection. Neurocomputing, 2003, 55, 721-726.	5.9	4
59	Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Networks, 2003, 16, 375-387.	5.9	33
60	An Algorithm to Model Paradigm Shifting in Fuzzy Clustering. Lecture Notes in Computer Science, 2003, , 70-76.	1.3	0
61	NEURObjects: an object-oriented library for neural network development. Neurocomputing, 2002, 48, 623-646.	5.9	20
62	Boosting and Classification of Electronic Nose Data. Lecture Notes in Computer Science, 2002, , 262-271.	1.3	3
63	<title>Three-dimensional visualization and navigation tool for diagnostic and surgical planning applications /title>., 2001, 4319, 507.</td><td></td><td>3</td></tr><tr><td>64</td><td>Dependence among Codeword Bits Errors in ECOC Learning Machines: An Experimental Analysis. Lecture Notes in Computer Science, 2001, , 158-167.</td><td>1.3</td><td>8</td></tr><tr><td>65</td><td>A time delay neural network for estimation of gas concentrations in a mixture. Sensors and Actuators B: Chemical, 2000, 65, 267-269.</td><td>7.8</td><td>38</td></tr><tr><td>66</td><td>Monitoring reliability of sensors in an array by neural networks. Sensors and Actuators B: Chemical, 2000, 67, 128-133.</td><td>7.8</td><td>22</td></tr><tr><td>67</td><td>Effectiveness of Error Correcting Output Codes in Multiclass Learning Problems. Lecture Notes in Computer Science, 2000, , 107-116.</td><td>1.3</td><td>33</td></tr><tr><td>68</td><td>A fuzzy clustering based segmentation system as support to diagnosis in medical imaging. Artificial Intelligence in Medicine, 1999, 16, 129-147.</td><td>6.5</td><td>120</td></tr><tr><td>69</td><td>Rough annealing by two-step clustering, with application to neuronal signals. Journal of Neuroscience Methods, 1998, 85, 81-87.</td><td>2.5</td><td>9</td></tr><tr><td>70</td><td>Rule Specialization in Networks of Fuzzy Basis Functions. Intelligent Automation and Soft Computing, 1998, 4, 73-81.</td><td>2.1</td><td>6</td></tr><tr><td>71</td><td><title>Neuro-fuzzy system for chaotic time series forecasting</title> ., 1997,,.		1
72	Building a neuro-fuzzy system to efficiently forecast chaotic time series. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 389, 264-267.	1.6	12

#	Article	IF	Citations
73	Segmentation of multivariate medical images via unsupervised clustering with "adaptive resolution― Computerized Medical Imaging and Graphics, 1996, 20, 119-129.	5.8	11
74	BFGS Optimization for Faster and Automated Supervised Learning., 1990,, 757-760.		88
75	Stochastic Dynamics and Input Dimensionality in a Two-Layer Neuronal Network for Modelling Multistable Perception. , 1990, , 1019-1022.		1
76	Ambiguity and structural information in the perception of reversible figures. Perception & Psychophysics, 1989, 45, 501-513.	2.3	8
77	Time-compressed video pictures for vision research. IEEE Transactions on Biomedical Engineering, 1988, 35, 210-214.	4.2	1
78	The response function of organic scintillators to fast neutrons. Nuclear Instruments & Methods, 1979, 165, 217-224.	1.2	33
79	A Novel Pitch Detection Algorithm Based on Instantaneous Frequency for Clean and Noisy Speech. Circuits, Systems, and Signal Processing, 0, , .	2.0	1