
James G Burchfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5558722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
2	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.	1.6	110
3	Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. ELife, 2018, 7, .	2.8	91
4	Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications, 2019, 10, 5486.	5.8	89
5	Inhibition of PKCÉ› Improves Glucose-Stimulated Insulin Secretion and Reduces Insulin Clearance. Cell Metabolism, 2007, 6, 320-328.	7.2	80
6	Akt Mediates Insulin-stimulated Phosphorylation of Ndrg2. Journal of Biological Chemistry, 2004, 279, 18623-18632.	1.6	76
7	Identification of a Distal GLUT4 Trafficking Event Controlled by Actin Polymerization. Molecular Biology of the Cell, 2009, 20, 3918-3929.	0.9	69
8	Variations in the requirement for v-SNAREs in GLUT4 trafficking in adipocytes. Journal of Cell Science, 2009, 122, 3472-3480.	1.2	69
9	High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.	1.6	65
10	Exocytotic Vesicle Behaviour Assessed by Total Internal Reflection Fluorescence Microscopy. Traffic, 2010, 11, 429-439.	1.3	60
11	The Rab GTPase-Activating Protein TBC1D4/AS160 Contains an Atypical Phosphotyrosine-Binding Domain That Interacts with Plasma Membrane Phospholipids To Facilitate GLUT4 Trafficking in Adipocytes. Molecular and Cellular Biology, 2012, 32, 4946-4959.	1.1	58
12	Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and Cellular Proteomics, 2017, 16, 2055-2068.	2.5	56
13	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	3.5	54
14	Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes. Journal of Biological Chemistry, 2015, 290, 23528-23542.	1.6	50
15	Diverse roles for protein kinase C l´ and protein kinase C lµ in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C l´. Diabetologia, 2009, 52, 2616-2620.	2.9	49
16	Cluster Analysis of Insulin Action in Adipocytes Reveals a Key Role for Akt at the Plasma Membrane. Journal of Biological Chemistry, 2010, 285, 2245-2257.	1.6	45
17	Deletion of PKCε Selectively Enhances the Amplifying Pathways of Glucose-Stimulated Insulin Secretion via Increased Lipolysis in Mouse β-Cells. Diabetes, 2009, 58, 1826-1834.	0.3	43
18	Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. BMC Bioinformatics, 2019, 20. 660	1.2	39

JAMES G BURCHFIELD

#	Article	IF	CITATIONS
19	Serine 474 phosphorylation is essential for maximal Akt2 kinase activity in adipocytes. Journal of Biological Chemistry, 2019, 294, 16729-16739.	1.6	32
20	DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia, 2014, 57, 2173-2182.	2.9	30
21	Quantitative Proteomic Analysis of the Adipocyte Plasma Membrane. Journal of Proteome Research, 2011, 10, 4970-4982.	1.8	29
22	Direction pathway analysis of large-scale proteomics data reveals novel features of the insulin action pathway. Bioinformatics, 2014, 30, 808-814.	1.8	29
23	Systemic VEGF-A Neutralization Ameliorates Diet-Induced Metabolic Dysfunction. Diabetes, 2014, 63, 2656-2667.	0.3	29
24	Regulation of hepatic insulin signaling and glucose homeostasis by sphingosine kinase 2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24434-24442.	3.3	29
25	The diverse roles of protein kinase C in pancreatic β-cell function. Biochemical Society Transactions, 2008, 36, 916-919.	1.6	28
26	Novel Systems for Dynamically Assessing Insulin Action in Live Cells Reveals Heterogeneity in the Insulin Response. Traffic, 2013, 14, 259-273.	1.3	27
27	Glucose Homeostasis in Mice Is Transglutaminase 2 Independent. PLoS ONE, 2013, 8, e63346.	1.1	23
28	Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle. Diabetologia, 2007, 50, 1732-1742.	2.9	22
29	The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9, e95598.	1.1	21
30	Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. ELife, 2021, 10, .	2.8	21
31	Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. Journal of Biological Chemistry, 2020, 295, 99-110.	1.6	20
32	Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. IScience, 2021, 24, 102118.	1.9	19
33	The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.	1.3	16
34	Improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. Journal of Cell Science, 2017, 130, 2757-2766.	1.2	15
35	A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems. FEBS Open Bio, 2015, 5, 226-239.	1.0	14
36	Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochemical Journal, 2022, 479, 1237-1256.	1.7	11

JAMES G BURCHFIELD

#	Article	IF	CITATIONS
37	A framework for generating realistic synthetic sequences of total internal reflection fluorescence microscopy images. , 2013, , .		9
38	CASK modulates the assembly and function of the Mint1/Munc18-1 complex to regulate insulin secretion. Cell Discovery, 2020, 6, 92.	3.1	9
39	Automatic identification of fusion events in TIRF microscopy image sequences. , 2009, , .		8
40	Glucose Transport: Methods for Interrogating GLUT4 Trafficking in Adipocytes. Methods in Molecular Biology, 2018, 1713, 193-215.	0.4	6
41	Towards fully automated identification of vesicle-membrane fusion events in TIRF microscopy. International Journal of Computer Aided Engineering and Technology, 2009, 1, 502.	0.1	5
42	Using Total Internal Reflection Fluorescence Microscopy (TIRFM) to Visualise Insulin Action. Neuromethods, 2012, , 97-109.	0.2	4
43	A co-receptor that represses beta-cell insulin action. Nature Metabolism, 2021, 3, 126-127.	5.1	2